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ABSTRACT: Melanoma is the most deadly skin cancer. Early diagno-

sis is a challenge for clinicians. Current algorithms for skin lesions’

classification focus mostly on segmentation and feature extraction.
This article instead puts the emphasis on the learning process, testing

the recognition performance of three different classifiers: support vec-

tor machine (SVM), artificial neural network and k-nearest neighbor.
Extensive experiments were run on a database of more than 5000 der-

moscopy images. The obtained results show that the SVM approach

outperforms the other methods reaching an average recognition rate

of 82.5% comparable with those obtained by skilled clinicians. If con-
firmed, our data suggest that this method may improve classification

results of a computer-assisted diagnosis of melanoma. VVC 2010 Wiley

Periodicals, Inc. Int J Imaging Syst Technol, 20, 316–322, 2010; Published online

in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ima.20261
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I. INTRODUCTION

Cutaneous melanoma is a spreading disease in the western world.

As advanced melanoma is still practically incurable, early recogni-

tion and surgical excision of thin lesions remain the mainstay of

treatment (Burroni et al., 2004). Despite the increasing awareness

of melanoma (Rigel et al., 2000), clinical diagnostic accuracy is still

disappointing (Burroni et al., 2004). Physicians visually inspect der-

moscopic images for abnormal morphological and chromatic fea-

tures that indicate malignancy. They commonly use the asymmetry,

border, color, dimension, and dermoscopic (ABCD) structures rule

for dermoscopy as guideline. Because of the subjective nature of

examination, the accuracy of diagnosis is highly dependent on

physician’s expertise. Computer-aided diagnosis (CAD) system

could provide an objective second opinion to clinicians, based on

consistently extracting and analyzing image features (Burroni et al.,

2004). The topic is largely investigated (Ganster et al., 2001;

Rubegni et al., 2002; Grana et al., 2003; Sboner et al., 2003;

Schmid-Saugeon et al., 2003; Maglogiannis et al., 2005; Celebi

et al., 2007). The mainstream approach to the problem focuses on

the development of segmentation algorithms (Ganster et al., 2001;

Grana et al., 2003; Schmid-Saugeon et al., 2003; Celebi et al.,

2007) and ad hoc feature descriptors (Ganster et al., 2001; Rubegni

et al., 2002; Grana et al., 2003; Sboner et al., 2003; Maglogiannis

et al., 2005; Celebi et al., 2007). The segmentation step is important

because it separates the lesion from the surrounding skin and hairs

(Ganster et al., 2001; Schmid-Saugeon et al., 2003; Celebi et al.,

2007), and it extracts the lesion’s contour, a relevant component in

the diagnostic process (Grana et al., 2003). Equally important is the

choice of the features that correspond to the selection of the rele-

vant information for the final diagnosis (Rubegni et al., 2002; Grana

et al., 2003; Sboner et al., 2003; Maglogiannis et al., 2005; Celebi

et al., 2007). The classification algorithm, the final ingredient in any

CAD system, is typically taken from the pattern recognition litera-

ture. Examples of classification algorithms used in the last years are

k-nearest neighbors, k-NNs (Ganster et al., 2001; Sboner et al.,

2003), artificial neural networks, ANNs (Rubegni et al., 2002;

Maglogiannis et al., 2005), and very recently support vector

machines, SVMs (Celebi et al., 2007).

The contribution of this article is a comparative evaluation of

several learning methods on a large collection of skin lesion

images. Specifically, we selected three different classifiers: SVMs

(Vapnik, 1998), ANNs (Bishop, 1995), and k-NN (Bishop, 1995).

We conducted an experimental evaluation of these techniques on

the Ganster’s database,* a collection of more than 5300 skin lesion

dermoscopy images. Using this database permits to compare our

results with those of expert clinicians and with the Ganster’s

method, based mainly on sophisticated segmentation and feature

extraction algorithms. We tested the classification methods on two

different types of features, color histograms, CHs (Swain et al.,

1991), and multidimensional receptive fields histograms, MFHs

(Schiele et al., 2000). These features reproduce two of the criteria

followed by dermatologists for diagnosis, respectively, ‘‘C’’ for

color variegation and ‘‘D’’ for differential local structures. Our

results show that SVM obtains remarkably better performances than

all other considered methods. It is remarkable to note that, on two

classes out of three, SVM achieves recognition results comparable

with those obtained by skilled clinicians. The rest of the article is

organized as follows: Section II describes the database used.

yWork done while at ‘‘Università di Roma La Sapienza’’.
Correspondence to: Elisabetta La Torre; e-mail: elisabetta.latorre@uniroma1.it

*We gratefully thank H. Ganster and A. Pinz for making the database and their
segmentation masks available to us.
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Section III briefly reviews the segmentation procedure and features

extraction algorithms chosen in the article. Section IV describes our

classification methods and Section V reports our experimental find-

ings. The article concludes with a summary discussion and possible

directions for future research.

II. DATASET DESCRIPTION

We performed our experiments on the database created by the

Department of Dermatology of the Vienna General Hospital (Gan-

ster et al., 2001). The authors refer that all images were captured

during routine clinical examinations to reflect the a priori probabil-

ities of the routine diagnosis in a specialized dermatology clinic

(Ganster et al., 2001). The whole database consists of 5380 skin

lesion images, divided into three classes: 4277 of these lesions are

classified as clearly benign lesions (class 1), 1002 are classified as

dysplastic lesions (class 2), and 101 lesions are classified as malig-

nant melanomas (class 3).y The lesions of the classes 2 and 3 were

all surgically excised, and the ground truth was generated by means

of histological diagnosis (Ganster et al., 2001). To have statistically

significant results, we ran experiments with five different partitions,

selected at random. More details about the partitions’ selection are

explained in Section V. This procedure has been adopted for all the

experiments reported here. Figure 1 shows some exemplar images

for each class.

III. SEGMENTATION AND FEATURE EXTRACTION

A. Preprocessing and Segmentation. Following the approach

proposed in the study of Ganster et al. (2001), we did not implement

any preprocessing step such as color normalization or hair removal.

As for the segmentation procedure, we used two different methods.

The first consists of simply cutting all the images with the help of a

common image editor software, selecting for each image the small-

est rectangle containing the lesion and keeping out as much skin as

possible. We call the resulting images ‘‘hand-segmented’’. The

second method is the one developed by Ganster et al. (2001). It

consists of a binary mask determined by several segmentation

algorithms combined together with a fusion strategy. We call the

resulting images ‘‘mask-segmented.’’ Exemplar images obtained

by these two segmentation techniques are shown in Figure 2. Run-

ning experiments on these two types of images allow us to explore

how the classification performance is affected by the quality of the

segmentation process.

B. Feature Extraction. In the ABCD rule, the color variegation

and the dermoscopic structures in the skin lesion are two of the dis-

criminant characteristics for clinical melanoma recognition. Thus

we decided to use CH and MFH as features able to retain chromatic

and textural information, respectively. A CH denotes the joint prob-

abilities of the intensities of the three color channels (Swain et al.,

1991). The red, green, and blue (RGB) system is based on the fact

that a large percentage of the visible spectrum can be represented

by mixing RGB colored light in various proportions and intensities.

Figure 1. Examples of skin lesion’s images used: images of (a, b, and c) benign lesions, (d, e, and f) dysplastic lesions, and (g, h, and i) malig-

nant lesion. Note the high variability within one class and the low variability between different classes. This makes the classification problem very

challenging.

yThese numbers are not perfectly coincident with those reported in the study of
Ganster et al. (2001), where the database is said to be of 5363 images, but this differ-
ence should not affect the comparison between the two algorithms.
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If the red and green components are normalized with the sum of the

RGB components, the rg system is obtained. Another common

approach is using the hue–saturation–value (HSV). This takes into

account the perceptual differences of colors by describing them by

their perceived color (hue), their dilution by white light (saturation),

and their luminance values. A CH of an image is produced first by

discretization of the colors in the image into a number of bins and

counting the number of image pixels in each bin. For each series of

experiments we used hue, rg, RG, RB, and GB CHs. Also, the reso-

lution of the bin axes was varied for each representation, consisting

of 8, 16, 32, and 64 (for bidimensional histograms we chose the re-

solution of each axis with the same bin value). For space reasons,

we report only the best result obtained.

The main idea of MFH is to calculate multidimensional histo-

grams of the response of a vector of receptive fields (Schiele et al.,

2000). A MFH is determined once we chose the local property

measurements (i.e., the receptive field functions), which determine

the dimensions of the histogram and the resolution of each axis. We

converted originally RGB images to gray scale and then we used

two different kinds of MFH representations. The first consisted of

Gaussian derivatives along x and y directions (Schiele et al., 2000):

Gr
x ðx; yÞ ¼ � x

a2
Grðx; yÞ; Gr

y ðx; yÞ ¼ � y

a2
Grðx; yÞ ð1Þ

where Gr(x,y) is the Gaussian distribution (Schiele et al., 2000)

with r 51.0(DxDy). The second consisted of Laplacian Gaussian

operator (Schiele et al., 2000):

Lapðx; yÞ ¼ x2

r4
þ 1

r2

8
>>:

9
>>;Grðx; yÞ þ y2

r4
þ 1

r2

8
>>:

9
>>;Grðx; yÞ ð2Þ

where Gr(x,y) is the Gaussian distribution (Schiele et al., 2000)

with r1 5 1.0, 1.5, and 3.0 and r2 5 2.0, 3.0, and 6.0 respectively

(Lp2r). The bin axes’ resolution varied for each representation. It

was of 8, 16, 32, and 64 for DxDy and 16 and 32 for Lp2r.

IV. CLASSIFICATION

In this section, we describe the classification algorithms that we

compared in this article: SVMs, ANNs, and k-NNs.

A. SVMs. SVMs are state-of-the-art large margin classifiers. Here,

we provide a brief review of the theory behind this type of algo-

rithm for the two class case. For the extension to multiclasses and a

more detailed treatment, we refer to the study of Vapnik (1998).

Consider the problem of separating a set of training data (x1,y1), . . .,
(xm,ym), where xi [ RN is a feature vector and yi [ {21, 11}, its

class label. If we assume that the two classes can be separated by a

hyperplane w�x 1 b 5 0, and that we have no prior knowledge about

the data distribution, then the optimal hyperplane is that which has

maximum distance to the closest points in the training set. The opti-

mal values for w and b can be found by solving a constrained mini-

mization problem, resulting in the classification function

f ðxÞ ¼ sign
Xm

i¼1

aiyiw � xþ b

8
>>>:

9
>>>; ð3Þ

where ai and b are found during training (Vapnik, 1998). Most of

the ai’s take the value of zero; those xi with nonzero ai are the

‘‘support vectors.’’ In case where the two classes are not linearly

separable an upper bound on the Lagrange multipliers is introduced

ai � C, i 5 1, . . ., m, where C determines the trade-off between

margin maximization and training error minimization. It is also pos-

sible to give different costs to false-positive and false-negative

errors, introducing the parameters C1 and C2, respectively, instead

of C (Vapnik, 1998). To obtain a nonlinear classifier, one maps the

data from the input space RN to a high-dimensional feature space H
by x ? /(x), such that the mapped data points of the two classes

are linearly separable in the feature space. Assuming there exists a

kernel function K such that K(x,y) 5 /(x) � /(y), a nonlinear SVM

can be constructed by replacing the inner product w�x by the kernel

function in Eq. (3). Popular kernel functions are the Gaussian radial

basis function (RBF) kernel

kðx; yÞ ¼ expð�g�jx� yj2Þ ð4Þ

and the polynomial kernel

Figure 2. Examples of segmentation. (a) An example of an entire

image, (b) the same image hand-segmented, and (c) the same image

mask-segmented.
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kðx; yÞ ¼ ðg�x � yÞd ð5Þ

As SVMs have started to be used for visual recognition, several

researchers have proposed new kernel functions. Chapelle et al.

(1999) proposed two new types of exponential kernels: the general-

ized Gaussian RBF kernel

kðx; yÞ ¼ expð�g�jxa � yajbÞ ð6Þ

and the v2 kernel.

kðx; yÞ ¼ expð�g�v2ðx; yÞÞ ð7Þ

These are the four kernels used in this article.

B. ANNs. ANNs are learning approaches inspired by the way bio-

logical nervous systems process information. They are composed of

a large number of highly interconnected elements designed to

mimic neurons (Bishop, 1995). An artificial neuron receives a num-

ber of inputs either from original data or from the output of the

other neurons in the network. Each input comes via a connection

that has a strength, which corresponds to synaptic efficacy. Each

neuron has also a single threshold value. The weighted sum of the

inputs is calculated and the threshold subtracted to compose the

activation signal of the neuron, which is then passed through a

transfer function to produce the output response. Typical transfer

functions are linear, threshold, and sigmoid (Bishop, 1995). Neural

networks are usually organized in layers: the first one is called the

input layer; the last one, the output layer; the intermediate ones (if

any) are called the hidden layers (Abdi et al., 1999). In a feed-for-

ward network, the information travels one way only, from input to

output, whereas in feedback networks, signals travel in both direc-

tions by introducing loops. The learning process is achieved

through the modification of the connection weights and thresholds

between units. The most widely known supervised learning rule

uses the difference between the actual output of a cell and the

desired output as an error signal for units in the output layer. The

adaptation of this rule for a multilayer network is known as error

backpropagation (Abdi et al., 1999). In this article, we used a feed-

forward neural network with only one hidden layer, sigmoid trans-

fer function, and error backpropagation as learning rule.

C. k-NN. The k-NN algorithm is a classification method based on

closest training examples in the feature space. Let Dn 5
fxb; . . . ; xng denote a set of n labelled prototypes and letting x0 [ Dn

be the prototype nearest to a test point x. Then the nearest-neighbor

rule for classifying x is to assign it the label associated with x0

(Bishop, 1995). An obvious extension of the nearest-neighbor rule

is the k-NN rule. This rule classifies x by assigning it the label most

frequently represented among the K-nearest samples (Bishop,

1995). The k-NN query starts at the test point x and grows as a

spherical region until it encloses k training samples, and it labels

the test point by a majority vote of these samples (Bishop, 1995). If

k is fixed and the number n of samples is allowed to approach infin-

ity, then all of the k-NNs will converge to x (Bishop, 1995).

V. EXPERIMENTS

In this section, we present experiments that show the effectiveness

of SVMs for melanoma recognition. We bench-marked SVMs,

ANN, and k-NN. For SVM, we used the four kernel types described

in Section IV. The kernel parameters were chosen via cross-valida-

tion. For ANN, we used a multilayer perceptron (MLP) with nor-

malized features. We tested MLP with one hidden layer, varying

the number of hidden neurons, i.e., h 5 514, 257, 128, and 64. For

the k-NN experiments, we used a normalized Euclidean distance

and K 5 1, 3, 5, . . ., 29. For space reasons, we report only the best

results obtained for ANN and k-NN in the following sections.

We performed three series of experiments: in the first series, all

the experiments were performed respecting the procedure reported

by Ganster et al. (2001). The training set consisted of 270 images;

those images were selected at random by choosing five sets of 90

images for each class. For classes 1 and 2, it was also possible to

impose the condition to have five different and disjoint training

sets. This constraint was not applied on class 3 because of the few

number of images, so the obtained five sets for this class were not

disjoint. The number of images in class 3, that is the images which

present the disease, depends on the prevalence of the disease itself.

The test set consisted of the whole database (Ganster et al., 2001).

Note that training and test set are not disjoint; once again we under-

line that this follows the procedure proposed by Ganster et al.

(2001), allowing for comparison of results. The outcome of these

experiments is reported in Section VA. For a fair evaluation of the

learning algorithms, it is necessary to disjoin the training set from

the test set. Therefore, we performed a second series of experiments

using the following partition: the training set consisted of 270 images

(90 for each class); those images were selected following the same

method chosen for the first series of experiments. The test set con-

sisted of the remaining database. The results of these experiments are

reported in Section VB. Finally, a third series of experiments was

performed, using only SVM for binary classification. Indeed, if the

aim of a CAD for skin lesions classification is to prescribe or not the

surgical excision of the lesion, it is reasonable to group dysplastic

and malignant lesions into a common class. In this series of experi-

ments, the database was thus composed of two classes: the first coin-

cident with class 1 of the previous experiments, and the second

defined by the union of classes 2 and 3 of the previous experiments.

The training set consisted of 180 images (90 for each of the two

obtained classes); the test set consisted of the remaining database.

The results of these experiments are reported in Section VC.

A. First Series of Experiments. We performed experiments

using CH and MFH representations as features. The obtained recog-

nition rates for hand-segmented and mask-segmented images using

SVM, ANN, and k-NN with both features types are reported in

Table I. For sake of clarity, we report the results obtained by

Ganster et al. (2001) too. Note that these results were obtained on a

Table I. Recognition results for the first series of experiments

CH, hand CH, mask MFH, hand MFH, mask

SVM-Poly (%) 74.9 � 2.8 67.1 � 7.8 66.9 � 13.1 69.7 � 3.8

SVM-Gauss (%) 59.0 � 10.3 62.6 � 6.2 51.1 � 8.6 69.8 � 3.7

SVM-genGauss(%) 75.9 � 14.0 80.2 � 2.8 80.7 � 1.7 82.5 � 0.1

SVM-v (%) 76.0 � 13.7 59.9 � 12.9 70.3 � 1.5 81.0 � 0.2

ANN (%) 55.8 � 4.7 64.0 � 10.1 51.2 � 12.8 48.0 � 9.8

K-NN (%) 46.0 � 5.4 48.9 � 5.5 47.1 � 4.9 51.4 � 4.7

Ganster et al. (%) 58

The experiments were performed on hand-segmented and mask-segmented images
using SVM with four kernel types, ANN and K-NN, with CH and MFH representation
as features. Results are averaged on five partitions, and standard deviations are also cal-
culated. The results obtained by Ganster et al. (2001) are also reported; note that these
results were obtained on a single run.
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single run, and as the features used are very different from ours, the

comparison between the approaches is mostly indicative.

A first comment is that SVM obtains the best result with respect

to Ganster’s method, ANN, and k-NN, for both feature types and

for both segmentation strategies. The best result is of 82.5%,

obtained using the generalized Gaussian kernel, MFH features, and

mask-segmented images. Comparable results are obtained with

color features, selected kernels, and on hand-segmented images.

The best performance achieved by ANN is of 64.0%, obtained using

mask-segmented images and CH features, with 257 neurons in the

hidden layer. Finally, the best result achieved by k-NN is of 51.4%,

obtained using mask-segmented images and MFH features, with

K 5 3. The recognition rate obtained with the Ganster’s method is

of 58%. These results clearly suggest the effectiveness of SVMs for

melanoma recognition. A second comment is that SVM’s perform-

ance varies considerably depending on the kernel type used. For

instance, using color features and hand-segmented images, the rec-

ognition rate goes from a minimum of 59.0% for the Gaussian

kernel to a maximum of 76.0% for v2-kernel. A similar behavior is

observed by using mask-segmented images and on textural features.

It is also interesting to note that, with both segmentation techniques

and feature types, the kernels which obtain the worst performances

tend to have the highest standard deviations, whereas the kernel

with the best performance has the smallest one. This illustrates the

importance of doing kernel selection during training; the low stand-

ard deviation of the SVMs’ best results also shows the stability of

our findings. We observe that the results obtained by the polynomial

kernel are comparable with those given by the other exponential

kernels. As the polynomial kernel is computationally very expen-

sive, we decided not to use it in the rest of the experiments. By

comparing the hand-segmented best result with the mask-seg-

mented one, we can see an improvement in recognition rate and sta-

bility passing from the first to the second, for both feature types.

This is an experimental proof of the importance of using a sophisti-

cated segmentation method.

Table II reports the confusion matrices for the best results

obtained by each possible combination of segmentation mask, fea-

ture type and SVMs, plus the confusion matrix obtained by Ganster

and that relative to clinicians’ performance on the database (Ganster

et al., 2001).{ For both segmentation techniques and feature types,

we see that SVM outperforms Ganster’s method for classes 1 and 3,

and it is comparable with the dermatologists’ performances. It is very

interesting to note that, in contrast, SVM performs poorly on class 2,

which corresponds to dysplastic lesions. This might be explained

considering that here we are using only one feature type for each set

of experiments, whereas Ganster used a selection of different fea-

tures, and dermatologists used the ABCD rule. It is thus possible that

just color/textural information is not discriminant enough to recog-

nize correctly dysplastic lesions, whereas both feature types seem to

be effective for separating benign and malignant lesions.

B. Second Series of Experiments. Experiments reported in

Section VA were performed on a not-disjoint experimental set. This

was done to compare fairly with the results reported by Ganster

et al. (2001), but this strategy does not allow to evaluate properly

the generalization capability of the chosen learning methods. Thus,

we performed a second series of experiments using a disjoint train-

ing and test set partitioned as follows: the training set consisted of

270 images (90 for each class); the test set consisted of the remain-

ing database. As in the previous series of experiments, we used CH

and MFH as features. For classification, we used SVM with kernel

functions v2, the Gaussian, and the generalized Gaussian ones,

ANN and k-NN. The classification results for hand-segmented and

mask-segmented images, with both features types and for all the

learning methods used, are shown in Table III.

We see that the best recognition rate is of 82.9 � 0.9%, obtained

using the generalized Gaussian kernel, MFH features, and mask-seg-

mented images. This result must be compared with the best recogni-

tion rate obtained on training and test set not-disjoint (Section VA and

Table I), which was of 82.5 � 0.1%. Both these results were obtained

using the generalized Gaussian kernel, MFH features, and mask-seg-

mented images. These two results are statistically equivalent and con-

firm the suitability of SVM for this application. As we noted earlier,

SVM’s performance varies considerably depending on the kernel type

used. Once again the best performance is achieved with the general-

ized Gaussian kernel, for all the feature representations and for both

hand-segmented and mask-segmented images. On the basis of the

results obtained on these two first series of experiments, we conclude

that SVMs are the best classification method among those proposed

here for melanoma classification. For the last series of experiments,

we will therefore use only SVM with different kernel functions.

C. Two Class Experiments and Receiver Operating
Characteristic Analysis. As reported by Ganster et al. (2001),

during routine clinical practice in the Vienna General Hospital, the

Table II. Confusion matrices for the first series of experiments

Ganster et al. Clinicians

True

Assigned

True

Assigned

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 2500 1347 410 Class 1 4161 94 9

Class 2 324 531 155 Class 2 42 960 8

Class 3 14 12 70 Class 3 6 19 78

SVM, CH hand SVM, CH mask

Class 1 3850.6 259.4 167.0 Class 1 4112.6 112.6 50.8

Class 2 798.2 150.4 53.4 Class 2 874.8 110.0 17.2

Class 3 9.8 1.2 90.0 Class 3 10.4 0.2 90.4

SVM, MFH hand SVM, MFH mask

Class 1 4184.8 45.5 45.8 Class 1 4251.8 4.2 20.0

Class 2 861.6 116.8 23.6 Class 2 901.0 95.8 5.2

Class 3 9.8 0.6 90.6 Class 3 10.4 0.4 90.2

Results for each class are averaged on five partitions, and standard deviations are also
calculated. The confusion matrix obtained by Ganster et al. (2001) and that relative to
clinicians’ performance on the database (Ganster et al., 2001) are also reported.

Table III. Recognition results for the second series of experiments

CH, hand CH, mask MFH, hand MFH, mask

SVM-Gauss (%) 58.8 � 11.4 62.8 � 7.1 51.0 � 9.26 70.8 � 4.0

SVM-genGauss (%) 75.0 � 13.8 79.1 � 3.0 79.5 � 1.8 82.9 � 0.9

SVM-v (%) 74.8 � 14.3 60.2 � 12.3 68.8 � 1.6 78.8 � 1.5

ANN (%) 55.8 � 5.2 64.6 � 11.2 50.6 � 13.6 44.9 � 6.5

K-NN (%) 44.4 � 5.7 47.5 � 5.9 45.9 � 5.0 50.3 � 4.9

The experiments were performed on hand-segmented and mask-segmented images
using SVM with three kernel types, ANN and K-NN, with CH, and MFH representa-
tion as features. Results are averaged on five partitions, and standard deviations are
also reported.

{For more details on the number of images used in the these last two confusion
matrices we refer the reader to Ganster et al. (2001).
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lesion is not surgically excised if three experienced dermatologists

agree on a benign diagnosis (Ganster et al., 2001). The lesions

named dysplastic are still considered as benign, but are so-called

precursors of malignant melanoma. As this category represents skin

lesions with an increased risk to turn into a melanoma, the category

receives its own class label. The lesions classified as dysplastic are

all surgically excised, as it is done for malignant ones (Ganster

et al., 2001).

Given that the purpose of a CAD system is to prescribe or not

the surgery, we decided to evaluate the recognition performance of

SVM for the classification of skin lesions in two classes: the first

class consisting of images of clearly benign lesions, and corre-

sponding to class 1; the second class consisting of the union of dys-

plastic and malignant lesion images, so we have now a new ‘‘class

2’’ which is constituted by the union of the old classes 2 and 3.

Thus we expect the CAD system to suggest the surgical excision

for the lesions in this last class on the basis of a binary decision. We

thus performed a new series of experiments with the following ex-

perimental setup: we used the ‘‘mask-segmented’’ images and CH

and MFH as features. The training set consisted of 180 images, 90

for each class, to have the same number of images in the training

set for the two new classes; the test set consisted of the remaining

database. We used SVM with the v2, Gaussian, and generalized

Gaussian kernels. The kernel parameters were chosen via cross-vali-

dation; the obtained results were analyzed using the receiver operat-

ing characteristic (ROC) analysis (Van Erkel et al., 1998). Specifi-

cally, we posed the cost parameter (C parameter, Section IV) equal

to 1, and we varied the C1/C2 ratio (see Section IV) from one to

nine to obtain the different points of the ROC curve. This means that

the loss of true positives is weighted more and more as the C1/C2

ratio increases. We then used the area under the ROC curve (AUC)

as a summary measure of the overall diagnostic performance (Hanley

et al., 1982). Table IV reports the average values of sensitivity and

specificity, with their standard deviations, for each kernel and

for each feature type, for C 5 1 and C1/C2 5 1. Table V reports

the average values of the AUC and their standard deviations for

each kernel.

These results clearly show that SVM gives very high values in

sensitivity with v2 and generalized Gaussian kernels and CH and

with generalized Gaussian kernel and MFH. In particular, with gener-

alized Gaussian kernel, we have a surprising sensitivity of 100% with

a null standard deviation for both feature types. It means that all the

positive lesions are correctly classified within every partition and

with both the features representation. Generalized Gaussian kernel

gives the best specificity also with the lowest standard deviations; for

this kernel we have a 99.23% for CH and 99.47% for MFH.

VI. CONCLUSIONS

In this article, we evaluated the importance of the classification

method for melanoma recognition. To this purpose, we considered

three different classifiers: SVMs, ANNs, and k-NN. The classifiers
were tested on a database of more than 5000 images using two fea-

ture types and two segmentation methods. Our results show that

SVM achieves very high performance on this task compared with

the other learning methods and compared with a feature-based

method previously proposed in the literature (Ganster et al.,

2001). Moreover, on two classes out of three, SVM achieves rec-

ognition results comparable with those obtained by skilled clini-

cians. A series of two class experiments showed that SVM gives

very good results in sensitivity and specificity, suggesting that

SVM could be an aid for the physicians in the choice of prescrib-

ing or not the surgical excision of the lesion. Data should be con-

firmed in an unselected population of cases representative of a

true clinical context, including different kinds of lesions such as

junctional, Spitz nevi, or other common nevi. In the future, we

plan to conduct similar experiments using shape descriptors, and

finally to experiment with cue integration schemes, to test the

effectiveness of different types of information and eventually to

reproduce the ABCD method.
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