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Abstract

Several object categorization algorithms use kernel

methods over multiple cues, as they offer a principled ap-

proach to combine multiple cues, and to obtain state-of-the-

art performance. A general drawback of these strategies is

the high computational cost during training, that prevents

their application to large-scale problems. They also do not

provide theoretical guarantees on their convergence rate.

Here we present a Multiclass Multi Kernel Learning

(MKL) algorithm that obtains state-of-the-art performance

in a considerably lower training time. We generalize the

standardMKL formulation to introduce a parameter that al-

lows us to decide the level of sparsity of the solution. Thanks

to this new setting, we can directly solve the problem in the

primal formulation. We prove theoretically and experimen-

tally that 1) our algorithm has a faster convergence rate as

the number of kernels grow; 2) the training complexity is

linear in the number of training examples; 3) very few iter-

ations are enough to reach good solutions. Experiments on

three standard benchmark databases support our claims.

1. Introduction

Categorization is one of the most challenging problems

in computer vision today. Object categories present a wide

visual variability within each class. This, coupled with

robustness issues (e.g. changes in illumination, occlusion,

clutter), makes it unclear how to build general models suit-

able for all categories. Because of this, a dominant approach

is to learn instead what distinguishes them, by using highly

discriminative and robust features combined with machine

learning techniques [8, 9, 13, 16, 24, 25]. In particular this

has been recently translated into Support Vector Machine

(SVM) based classifiers combined with kernels over mul-

tiple cues [2, 8, 9, 13, 24, 25]. Results obtained by these

methods on various benchmark databases represent the cur-

rent state-of-the-art in object categorization. Among them,

Multi Kernel Learning (MKL) approaches have attracted

∗Work done while at Idiap Research Institute, Martigny, Switzerland

considerable attention [8, 13, 24]. However most empha-

sis has been put so far on their accuracy, and recent find-

ings seem to indicate that current MKL algorithms do not

improve much over the naive baseline of averaging all the

kernels [9].

Almost every interesting categorization problems have

more than two classes, and most of the MKL algo-

rithms [12, 18, 22] solves the multiclass problem by de-

composing it into multiple independent binary classification

tasks (except [27]). However, recent evidence [9] seems

to suggest that a principled multiclass formulation (such as

those in [9, 23, 27]) achieves better performance, at least on

sparse problems using l1 regularization. Moreover, to our

knowledge, none of the MKL algorithms [12, 18, 22] pro-

vides theoretical guarantees on their convergence rate. In

practice, the learning process is usually stopped early, be-

fore reaching the optimal solution, based on the common

assumption that it is enough to have an approximate solu-

tion of the optimization function. Considering the fact that

current MKL algorithms are solved based on their dual rep-

resentation, this might mean being stopped far from the op-

timal solution [10]. Last but not least, scalability is also

very important for many real world applications.

The contribution of this paper is a Multiclass MKL al-

gorithm that has a guaranteed and fast convergence rate to

the optimal solution. We also generalize the MKL learning

problem, adding a parameter to tune the level of sparsity in

the kernel domain. We show experimentally that aiming at

sparsity, as in the original MKL formulation, is not always

the optimal strategy. Our algorithm has a training time that

depends linearly on the number of training examples, with a

convergence rate sub-linear in the number of kernels used.

At the same time, it achieves state-of-the-art performance

on standard benchmark databases. The algorithm is based

on a stochastic sub-gradient descent algorithm in the pri-

mal objective formulation. Minimizing the primal objective

function directly results in a convergence rate that is faster

and provable, rather than optimizing the dual objective. We

show that by optimizing the primal objective function di-

rectly, we are able to solve the multiclass formulation effi-
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ciently, with a running time which is linear to the number

of classes. We can stop the algorithm after few iterations,

while still retaining a performance close to the optimal one.

We call this algorithm OBSCURE, Online-Batch Strongly

Convex mUlti keRnel lEarning.

1.1. Multiple Cues and Kernels

Consider the task of image classification with M classes,

F different cues and N training instances {xi}N
i=1 drawn

from an unknown fixed probability distribution. We want

to learn a score function s(·, ·) that best predicts the class ŷ
for any future sample x drawn from the same distribution,

where the predicted class is the one with the highest score

ŷ(x) = argmax
y∈Y

s(x, y) . (1)

This score function should be learned using all the F differ-

ent cues, to gain robustness and performance.

Some of the methods addressing this task are based on a

two-layers structure [9, 16]. A classifier is trained for each

cue and then their outputs are combined by another classi-

fier. Even if this strategy has recently received attention in

the computer vision community, this kind of approach is the

oldest and dates back to the seminal work of Wolpert [26].

They use Cross-Validation (CV) methods to create the train-

ing set for the second layer [9, 26]. Hence they have a run-

time of about K+1 times the training of a single classifier,

such as support vector machine (SVM), where K is the num-

ber of folds of the CV. This method is currently considered

the state-of-art method for image classification tasks [9].

Another interesting strategy uses a one-layer architec-

ture, such as the MKL [14, 18, 22, 24, 27]. Using the theory

of kernels, one solves a joint optimization problem while

also learning the optimal weights for combining the kernels,

with each cue corresponding to a kernel. The optimization

problem is similar in all these approaches. This approach

is theoretically founded, plus it consists of a unique opti-

mization problem. However solving it is more complex than

training, e.g., a single SVM classifier. Another issue is that

current MKL approaches do not scale well to the number

of training examples and number of classes. For example,

the SILP algorithm [22, 27] depends polynomially on the

number of training examples and number of classes with an

exponent of ∼ 2.4 and ∼ 1.7 respectively. For the other

algorithms these dependencies are not clear.

From a theoretical point of view, if we consider a two-

layers architecture with the first layer composed by kernel

classifiers, and a linear classifier in the second stage, the two

approaches are very similar. In both cases the final predic-

tion function is written as

ŷ(x) = argmax
y∈Y

F∑

j=1

βj
ysj(x, y), (2)

where βj
y are the weights learned by the one-layer or two-

layers framework, and sj is the score function for each ker-

nel. Therefore the two formulations are essentially equiva-

lent, with differences given only by the specific training pro-

cedures used. In both methods a regularizer that favors the

selection of only a subset of the kernels is used [1, 9, 22, 24].

The main contribution of this paper is showing that the

one-layer formulation, beside being more principled, can

also achieve a comparable performance and a considerably

lower training time than state-of-the-art two-layers architec-

tures. We propose a p-norm version of the standard MKL

algorithm, and we minimize it with a two stages algorithm.

The first one is an online initialization procedure that de-

termines quickly the region of the space where the optimal

solution lives. The second stage refines the solution found

by the first stage. Differently from the other methods, our

algorithm solves the optimization problem directly in the

primal formulation, in both stages. Using recent approaches

in optimization theory, the algorithm takes advantage of the

abundance of information to reduce the training time [21].

In fact, we show that the presence of a large number of ker-

nels helps the optimization process instead of hindering it,

obtaining, theoretically and practically, a faster convergence

rate with more kernels.

The rest of the paper presents the theory and the experi-

mental results supporting our claims. Section 2 revises the

basic definitions of MKL and generalizes it to p-norm for-

mulation. Section 3 presents the theory and algorithm of

OBSCURE, while Section 4 reports experiments on catego-

rization tasks.

2. p-norm Multi Kernel Learning

In this section we first introduce formally the MKL

framework and its notation, then its p-norm generalization.

2.1. Definitions

Notations. Let {xi, yi}N
i=1, with N ∈ N, xi ∈ X and

yi ∈ Y = {1, · · · ,M},M > 2, be the training set. We

indicate matrix and vectors with bold letters. A bar, e.g.

w̄, denotes the vector formed by the concatenation of the F
vectors w

j , hence w̄ = [w1,w2, · · · ,wF ].

Multi-class Classifier. A common approach to multiclass

classification is to use joint feature maps φ(x, y) on data X

and labels Y [23]. The function sj will be defined as

sj(x, y) = w
j · φj(x, y), (3)

where w
j is a hyperplane1. The functions φj(x, y) map

the samples into a high, possibly infinite, dimensional

space. With multiple cues, we will have F functions

1For simplicity we will not use the bias, it can be easily added by mod-

ifying the kernel definition.



φj(·, ·), j = 1, · · · , F . This will also define F kernels

Kj((x, y), (x′, y′)) as φj(x, y) · φj(x′, y′). This definition
includes the case of training M different hyperplanes, one

for each class. Indeed φj(x, y) can be defined as

φj(x, y) = [0, · · · ,0, φ′j(x)
︸ ︷︷ ︸

y

,0, · · · ,0], (4)

where φ′j(·) is a transformation that depends only on

data. Similarly w will be composed by M blocks,

[w1, · · · ,wM ]. Hence, by construction, w · φj(x, r) =
w

r · φ′j(x). According to the defined notation, φ̄(x, y) =
[φ1(x, y), · · · , φF (x, y)].

Loss Function. We define a multi-class loss function [23]

ℓ (w,x, y) = max
y′ 6=y

|1 − w̄ · (φ̄(x, y) − φ̄(x, y′))|+, (5)

where |t|+ is max(t, 0). This loss function is convex and it

upper bounds the multi-class misclassification loss.

Norms and dual norms. A generic norm of a vector w is

indicated by ‖w‖, its dual norm is indicated by ‖w‖∗. For
w ∈ R

d and p ≥ 1, we denote by ‖w‖p the p-norm of w,

i.e., ‖w‖p = (
∑d

i=1 |wi|p)1/p. The dual norm of ‖ · ‖p is

‖·‖q , where p and q satisfy 1/p+1/q = 1. In the following
p and q will always satisfy this relation.

Group Norm. It is possible to define a (2, p) group norm

‖w̄‖2,p on w̄ as

‖w̄‖2,p :=
∥
∥
[
‖w1‖2, ‖w2‖2, · · · , ‖wF ‖2

]∥
∥

p
, (6)

that is the p-norm of the vector of F elements, formed by

2-norms of the vectors w
j . The dual norm of ‖ · ‖2,p is

‖ · ‖2,q [11].

2.2. Multi Kernel Learning

TheMKL optimization problem was first proposed in [1]

and extended to multiclass in [27]. It can be written as

min
wj

λ

2





F∑

j=1

‖wj‖2





2

+
1

N

N∑

i=1

ξi

s.t. w̄ · (φ̄(xi, yi) − φ̄(xi, y)) ≥ 1 − ξi,∀i, y 6= yi . (7)

This same formulation is used in [1, 22], while in [18]

the proposed formulation is slightly different, although it

is proved to be equivalent. Note that we weight the regu-

larization term by λ and divide the loss term by N , instead

of the more common formulation with only the loss term

weighted by a parameter C. Our choice greatly simplifies

the math of our algorithm. The two formulations are fully

equivalent when setting λ = 1
CN .

We will now generalize this formulation to group-norms.

Using the notation defined above, we can rewrite (7) as

min
w̄

λ

2
‖w̄‖2

2,1 +
1

N

N∑

i=1

ℓ (w̄,xi, yi) , (8)

where w̄ = [w1,w2, · · · ,wF ]. The (2, 1) group norm is

used to induce sparsity in the domain of the kernels. This

means that the solution of the optimization problem will se-

lect a subset of the F kernels. However, even if sparsity can

be desirable for specific applications, it could bring to a de-

crease in performance. Moreover the problem in (8) is not

strongly convex [11], so its optimization algorithm is rather

complex and its rate of convergence is usually slow [1, 22].

We propose to generalize the optimization problem, us-

ing a generic group norm

min
w̄

λ

2
‖w̄‖2

2,p +
1

N

N∑

i=1

ℓ (w̄,xi, yi) , (9)

where 1 < p ≤ 2. We define f(w̄) = λ
2
‖w̄‖2

2,p +
1
N

∑N
i=1 ℓ (w̄,xi, yi) and w̄

∗ equals to the optimal solu-

tion of (9), w̄∗ = arg minw̄ f(w̄). The added parameter p
will allow us to decide the level of sparsity of the solution.

In fact it is known that the 1-norm favors sparsity, and here

the 1-norm favors a solution in which only few hyperplanes

have a norm different from zero. Moreover this new formu-

lation has the advantage of being λ/q-strongly convex [11].
Strong convexity is a key property to design fast batch and

online algorithms: the more a problem is strongly convex

the easier it is to optimize it [11, 19]. Many optimization

problems are strongly convex, as the SVM objective func-

tion. When p tends to 1, the solution gets close to the sparse

solution obtained solving the problem in (7), but the strong

convexity decreases. When p equals to 2, it is equivalent to

using a single kernel equal to the sum of all the kernels. Re-

cently a different p-norm MKL problem has been also pro-

posed in [12], that allows non-sparse solutions. However,

their algorithm did not take advantage of nice properties of

the strong convexity for the optimization process. In the

next section, we will show how to use the strong convexity

to design a fast algorithm to solve (9).

3. The OBSCURE Algorithm

Our basic optimization tool is the framework developed

in [19, 20]. It is a general framework to design and analyze

stochastic sub-gradient descent algorithms for any strongly

convex function. At each step the algorithm takes a ran-

dom sample of the training set and calculates a sub-gradient

of the objective function evaluated on the sample. Then it

performs a sub-gradient descent step with decreasing learn-

ing rate, followed by a projection of the solution inside

the space where the solution lives. The algorithm Pegasos,



Algorithm 1 OBSCURE stage 1 (online)

1: Input: q, η
2: Initialize: θ̄1 = 0, w̄1 = 0

3: for t = 1, 2, . . . , T do

4: Sample at random (xt, yt)
5: ŷt = argmax

y 6=yt

w̄t · φ̄(xt, y)

6: z̄t = φ̄(xt, yt) − φ̄(xt, ŷt)
7: if ℓ(w̄t, xt, yt) > 0 then θ̄t+1 = θ̄t + ηz̄t

8: else θ̄t+1 = θ̄t

9: w
j
t+1 = 1

q

„

‖θ
j
t+1

‖2

‖θ̄t+1‖2,q

«q−2

θ
j
t+1, ∀j = 1, · · · , F

10: end for

11: return θ̄T+1, w̄T+1

12: return R =
q

‖w̄T+1‖2
2,p + 2

λN

PN

i=1 ℓ (w̄T+1, xi, yi)

Algorithm 2 OBSCURE stage 2 (batch)

1: Input: q, θ̄1, w̄1, R, λ
2: Initialize: s0 = 0
3: for t = 1, 2, . . . , T do

4: Sample at random (xt, yt)
5: ŷt = argmax

y 6=yt

w̄t · φ̄(xt, y)

6: if ℓ(w̄t, xt, yt) > 0 then z̄t = φ̄(xt, yt) − φ̄(xt, ŷt)
7: else z̄t = 0

8: dt = λt + st−1

9: st = st−1 + 0.5

 r

d2
t + q

( λ
q
‖θ̄t‖2,q+‖z̄t‖2,q)2

R2 − dt

!

10: ηt = q

λt+st

11: θ̄t+ 1
2

= (1 − ληt

q
)θ̄t + ηtz̄t

12: θ̄t+1 = min
“

1, qR/‖θ̄t+ 1
2
‖2,q

”

θ̄t+ 1
2

13: w
j
t+1 = 1

q

„

‖θ
j
t+1

‖2

‖θ̄t+1‖2,q

«q−2

θ
j
t+1, ∀j = 1, · · · , F

14: end for

based on this framework, is the current state-of-art solver

for linear SVM [20, 21].

Given that the (2, p) group norm is strongly convex, we

could use this framework to design an efficient MKL algo-

rithm. It would inherit all the properties of Pegasos [20, 21].

In particular the convergence rate, and hence the training

time, would be proportional to q
λ . Although in general this

convergence rate can be quite good, it becomes slow when

λ is small and/or q is big. Moreover it is common knowl-

edge that in many real-world problems, particularly in vi-

sual learning tasks, the best setting for λ is very small, or

equivalently C is big (the order of 102 − 103). Notice that

this is a general problem. The same problem also exists in

the other SVM optimization algorithms such as SMO and

similar approaches [10], as their training time also depends

on the value of the parameter C.

Do et al. [6] proposed a variation of the Pegasos algo-

rithm called proximal projected sub-gradient descent. This

formulation has a better convergence rate for small values

of λ, while retaining the fast convergence rate for big values
of λ. A drawback is that the algorithm needs to know in ad-

vance an upper bound on the norm of the optimal solution.

In [6] the authors proposed an algorithm that estimates this

bound while training, but it gives a speed-up only when the

norm of the optimal solution w̄
∗ is small. This is not the

case in most of the MKL problems for categorization tasks.

Our OBSCURE algorithm takes the best of the two so-

lutions. We first extend the framework of [6] to the generic

non-Euclidean norms. Then we solve the problem of the

upper bound of the norm of the optimal solution using an

new online algorithm. This takes advantage of the charac-

teristic of the MKL task and quickly converges to a solution

close to the optimal one. Hence OBSCURE is composed

by two steps: the first step is a fast online algorithm (Al-

gorithm 1), used to quickly estimate the region of the space

where the optimal solution lives. The second step (Algo-

rithm 2) starts from the approximate solution found by the

first stage, and exploiting the information on the estimated

region, it uses a stochastic proximal projected sub-gradient

descent algorithm.

The following theorem2 gives a theoretical guarantee on

the convergence rate of OBSCURE to the solution of (9).

Theorem 1. Suppose that ‖φj(xt, yt)‖2 ≤ 1,∀j =
1, · · · , F, t = 1, · · · , N . Let 1 < p ≤ 2, δ ∈ (0, 1), R the

value returned by the first stage, and c =
√

2F 1/q + λR.

Then with probability at least 1 − δ over the choices of the

random samples we have that after T iterations of the 2nd

stage of the OBSCURE algorithm, the difference between

f(w̄T ) and the optimal solution of (9), f(w̄∗), is less than

c
√

q
√

1 + log T

δ
min

(
c
√

q
√

1 + log T

λT
,

4R√
T

)

.

Moreover if the problem is linearly separable by a hyper-

plane ū and the first stage is run until convergence, R is

less than 2(1 + ηF
2
q )‖ū‖2,p.

The theorem first shows that a good estimate of R can

speed-up the convergence of the algorithm. In particu-

lar if the first term is dominant, the convergence rate is

O( q log T
λT ). If the second term is predominant, the conver-

gence rate isO(R
√

q log T√
T

), so it becomes independent from

λ (i.e. independent from C). The algorithm will always op-

timally interpolate between these two different rates of con-

vergence. As said before, the rate of convergence depends

on p, through q. When p tends to 1, the solution tends to

the sparse one of (7), with a worst rate. However in the ex-

periment section we show that the best performance is not

always given by the sparsest solution. Moreover Theorem 1

2For an extended version of this paper with proofs, see

http://francesco.orabona.com/papers/obscure-proofs.pdf.



also shows that, when p is close to 1, the convergence rate

has a sublinear dependency on the number of kernels, F ,

and if the problem is linearly separable it can have a faster

convergence rate using more kernels. We will explain this

formally in Section 3.2.

The training time of OBSCURE is proportional to the

number of steps given by Theorem 1 multiplied by the com-

plexity of each step. This in turn is dominated by the pre-

diction (line 5 in Algorithms 1 and 2), that has complexity

O(NFM). Note that this complexity is common to any

other similar algorithm, and it can be reduced using meth-

ods like kernel caching [5].

In the following we introduce the necessary mathemati-

cal tools to be able to derive OBSCURE and its theorem.

3.1. Batch p­norm MKL

We first state a Lemma that is a generalization of Theo-

rem 1 in [6] to general norms, using the framework in [19].

We need two additional definitions. Given a convex func-

tion f : S → R, its Fenchel conjugate f∗ : S → R is

defined as f∗(u) = supv∈S(v · u − f(v)). A vector x is

a sub-gradient of a function f at v, indicated with ∂f(v), if
∀u ∈ S, f(u) − f(v) ≥ (u − v) · x.

Lemma 1. Let h(·) = α
2
‖ · ‖2 be a 1-strongly convex func-

tion w.r.t. a norm ‖ · ‖ over S. Assume that for all t, gt(·)
is a σ-strongly convex function w.r.t. h(·), and ‖zt‖∗ ≤ Lt.

Then for any u : ‖u − wt‖ ≤ 2R, and for any sequence of

non-negative ξ1, . . . , ξT , Algorithm 3 achieves the follow-

ing bound for all T ≥ 1,

T∑

t=1

(gt(wt) − gt(u)) ≤
T∑

t=1

[

4ξtR
2 +

L2
t

σt +
P

t
i=1

ξi

α

]

.

With this Lemma we can now design stochastic sub-

gradient algorithms. In particular, setting ‖ · ‖2,p as norm,

h(w̄) = q
2
‖w̄‖2

2,p, and gt(w̄) = λ
q h(w̄)+ ℓ (w̄,xt, yt), we

obtain Algorithm 2 that solves the p-norm MKL problem in

(9). In particular lines 6-7 correspond to the calculation of

the sub-gradient of the multiclass loss function (5). The up-

dates are done on the dual variables θ̄t, in lines 11-12, that

are transformed into w̄t in line 13.

Note also that Algorithm 2 can start from any vector,

while this is not possible in the Pegasos algorithm where

at the very first iteration the starting vector is multiplied by

0 [20]. The parameter R is basically an upper bound on

the norm of the optimal solution, i.e. R ≥ ‖w̄∗‖2,p. In the

next Section we show how to initialize this algorithm and to

calculate R in an efficient way.

3.2. Initialization through an online algorithm

In Theorem 1 we saw that if we have a good estimate of

R, the convergence rate of the algorithm can be much faster.

Algorithm 3 Proximal projected sub-gradient descent

1: Input: R, σ, w1 ∈ S
2: Initialize: s0 = 0
3: for t = 1, 2, . . . , T do

4: Receive gt

5: zt = ∂gt(wt)

6: st = st−1 +

r

(ασt+st−1)2+
αLt
R2

−(ασt+st−1)

2

7: ηt = (σt + st/α)−1

8: wt+1 = ∇h∗(∇h(wt) − ηtzt)

9: end for

Moreover starting from a good solution could speed-up the

algorithm even more.

We propose to initialize Algorithm 2 with an online al-

gorithm. Algorithm 1 is the online version of problem (9)

and it is derived using Corollary 7 in [11]. It is similar to

the 2p-norm matrix Perceptron in [3], but it overcomes the

disadvantage of being used with the same kernel on each

feature. As in [3], for Algorithm 1 it is possible to prove

a relative mistake bound. We omit the details for lack of

space, a future longer version of this work will include it.

We can run it just for few iterations and then evaluate its

norm and its loss. In Algorithm 1 R is then defined as

R :=
q

‖w̄T+1‖2
2,p + 2

λN

PN

i=1 ℓ (w̄T+1, xi, yi)

≥
q

‖w̄∗‖2
2,p + 2

λN

PN

i=1 ℓ (w̄∗, xi, yi) ≥ ‖w̄∗‖2,p . (10)

So at any moment we can stop the algorithm and obtain an

upper bound on ‖w̄∗‖2,p.

If the dimension of the space induced by the F kernles is

big enough, it is very likely that the classification problem is

linearly separable. When this is the case, we can prove that

Algorithm 1 will converge to a solution which has null loss

on each training sample, in a finite number of steps. More

specifically we can state the following Theorem.

Theorem 2. Suppose that ‖φj(xt, yt)‖2 ≤ 1,∀j =
1, · · · , F, t = 1, · · · , N , and 1 < p ≤ 2. If the problem

(9) is linearly separable by a hyperplane ū, then the

Algorithm 1 will converge to a solution in a finite num-

ber of steps less than 2q(1/η + F
2
q )‖ū‖2

2,p. Moreover

the returned value of R will be less than 2(1+ηF
2
q )‖ū‖2,p.

From the theorem it is clear the role of η: a bigger value
will speed up the convergence, but will decrease the quality

of the estimate of R. So η governs the trade-off between

speed and precision of the first stage. If p is close to 1,

the dependency on the number of kernels in this theorem

is strongly sublinear, moreover increasing the number of

kernels to F ′ > F , we have that ‖ū‖2
2,p will most likely

decrease or remain constant. This means that we expect Al-

gorithm 1 to converge, in a number of steps that is almost



independent on F and in some cases even decreasing in F .

The same consideration holds for the value of R returned

by the algorithm, that can decrease when we increase the

number of kernels. A smaller value of R will mean a faster

convergence of the second stage. We will confirm this state-

ment experimentally in Section 4.

4. Experiments

In this section we test OBSCURE on the Oxford flow-

ers [17], Caltech-101 [7] and MNIST [15] datasets. Al-

though our MATLAB implementation of the algorithm3 is

not optimized for speed, it is already possible to observe

the advantage of the low runtime complexity. This is par-

ticularly evident when training on datasets containing large

numbers of categories and lots of training samples. In all

our experiments, the parameter η is fixed at 2, and p is cho-

sen from the set {1.01, 1.05, 1.10, 1.25, 1.50, 1.75, 2}. The
regularization parameter λ is set through CV, as 1

CN , where

C ∈ {1, 10, 100, 1000}.

4.1. Oxford flowers

The Oxford flowers dataset [17] contains 17 different

categories of flowers. Each class has 80 images with

three predefined splits (train, validation and test). The au-

thors also provide seven precomputed distance matrices4.

These distance matrices are transformed into kernel using

exp(−γ−1 · d), where γ is the mean of the pairwise dis-

tances and d is the distance between two examples. We

used a value of p equal to 1.05, found through CV.

We have implemented an extended version of the orig-

inal Pegasos algorithm [20, 21] for problem (9). We first

compare the running time performance between OBSCURE

and Pegasos. Their generalization performance on the test-

ing data (Figure 1(Left)) as well as the value of the objec-

tive function (Figure 1(Right)) are shown in Figure 1. In

the same Figure, we also present the results obtained using

other combination methods: SILP [22], SimpleMKL [18]

and LP-β [9]. The cost parameter is selected from the range

C ∈ {1, 10, 100, 1000} for MKLmethods. We see that OB-

SCURE converges much faster compared to Pegasos. This

proves that, as stated in Theorem 1, OBSCURE has a better

convergence rate than Pegasos. All the feature combina-

tion methods achieve similar results on this dataset. LP-β
is order of magnitudes faster as it uses an efficient standard

SVM solver [5].

4.2. Caltech­101 datasets

The Caltech-101 [7] dataset is a standard benchmark

dataset for object categorization. Here we followed the ex-

perimental setup originally proposed and widely used in the

3Code available at http://dogma.sourceforge.net/
4www.robots.ox.ac.uk/˜vgg/research/flowers/
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Figure 1. Comparison of performance on Oxford flowers dataset.

literature. In our experiments, we used the pre-computed

features and kernels of [9], with the same training and test

split5. This allows us to compare against them directly. Fol-

lowing that, we report results using all 102 classes of the

Caltech-101 dataset using five splits. There are five differ-

ent image descriptors, using different setup of parameters

and computed at different scales. It results in a total of 39

kernels. Note that, as they are derived from 5 features only,

some of them might be redundant. For brevity, we omit the

details of the features and kernels that can be found in [9].

Figure 2 shows the behavior of our algorithm using dif-

ferent values of the parameter p (Figure 2(Left)), different

number of kernels (Figure 2(middle)) and the running time

under different size of training examples (Figure 2(right)).

The dashed line in Figure 2(left & middle) corresponds to the

results obtained by the first online stage of the OBSCURE

algorithm. It can be observed from the figures that:

a). [Figure 2(Left)] The online step of OBSCURE achieves

a performance close to the optimal solution in a train-

ing time order of magnitudes faster (101 to 103). When

p is large (i.e. q is small) the online stage converges

even faster. This is consistent with Theorem 2.

b). [Figure 2(Left)] By changing p, it is possible to improve

performance. As stated before, when p tends to 1, the

solution gets close to the sparse solution. In particular

here 3 ‖wj‖2 (out of 4) approach 0. When p equals 2,

we obtain a dense solution, that corresponds to use the

sum of all the kernels. Although some of the kernels

may contain redundant information, all of themmay be

informative for classification. Thus imposing sparsity

on them does not always help increasing performance.

Hence the optimal p here is 1.10 − 1.25.

c). [Figure 2(Middle)] OBSCURE has a better converges

rate when there are more kernels, as stated in Theo-

rem 2. That is, the algorithm achieves a given accuracy

in less iterations when more kernels are given.

d). [Figure 2(Right)] We can see that the algorithm con-

verges quite fast to the optimal solution. Using 15 ex-

amples per class, the run time is similar to the runtime

of LP-β (about 24 mins). When the number of training

5www.vision.ee.ethz.ch/˜pgehler/projects/iccv09/
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Figure 3. Performance comparison on Caltech-101 using different

combination methods.

examples increases to 30, our algorithm has an advan-

tage over LP-β, that takes about 121 mins.

In Figure 3 we report the results obtained using different

combination methods. The best results for OBSCURE were

obtained when p is at the smallest value (1.01). This is prob-

ably because among these 39 kernels many were redundant

or not discriminative enough. For example, the worst sin-

gle kernel achieves only an accuracy of 13.5% ± 0.6 when

trained using 30 images per category, while the best sin-

gle kernel achieves 69.4% ± 0.4. Thus, sparser solutions

are to be favored. We see also that our method achieves

performance comparable to the state-of-art (LP-β, [9]), and
outperforms the other MKL (SILP) methods. One possi-

ble reason may be the one-vs-all multiclass extension used

in the MKL algorithm. The sparse MKL algorithm may

choose different subset of kernels in different independent

binary classification tasks, which may introduce a bias on

some classes in the final decision process. However, note

that although our algorithm obtains a solution close to the

sparse one, it will never reach a completely sparse solution.

This may be one of the reasons for the gap in performance

between OBSCURE and LP-β [9]. However, this may not

be critical, since usually in practice all used features/kernels

are informative. Non-informative/duplicate features are un-

likely to be included in a real system. We did a simple test

by selecting five kernels from the five different families of

features [9] which achieve low leave-one-out (LOO) error

using 30 training examples per class. It can be done au-

tomatically using LS-SVM, which has a closed form so-

lution for LOO error estimation [4]. The results as well

as the performance of the averaging of these five kernels

are also shown in Figure 3. We see that the algorithm im-

proves slightly over the previous one. This suggests that

OBSCURE as well as SILP, when provided with discrim-

inative features, could increase performance even further.

It also seems to indicate that there is a margin to improve

the regularization used in MKL methods, as currently more

kernels do not necessarily transform into better accuracy.

4.3. MNIST

In the last experiment we use the MNIST [15] dataset of

handwritten digits. The dataset has a training set of 60,000

gray-scale 28x28 pixel digit images for training and 10,000

images for testing. We cut the original digit image into four

square blocks (14 × 14) and obtained an input vector from

each block. We used three kernels on each block: a linear

kernel, a polynomial kernel and a RBF kernel, resulting in

12 kernels. Figure 4 shows the generalization performance

on the test set achieved by OBSCURE over time, for var-

ious sizes of training set. We see that OBSCURE quickly

converges to the best performance. It also shows that the

time to reach the optimum is approximately linear in the

number of training samples. The SVM performance using

averaging kernel and the best kernel is also plotted. Notice

that in the figure we only show the results of up to 20,000

training samples for the sake of comparison, otherwise we
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Figure 4. The generalization performance of MNIST dataset over

different size of training samples.

could not cache all the 12 kernels in memory. However, by

computing the kernel “on the fly” we are able to solve the

MKL problem using the full 60,000 examples efficiently.

5. Conclusions and Discussion

This paper presents OBSCURE, a novel and efficient

algorithm for solving p-norm MKL. It uses a hybrid

two-stages online-batch approach, optimizing the objective

function directly in the primal with a stochastic subgradi-

ent descent method. Experiments show that OBSCURE

achieves state-of-art performance on multiclass classifica-

tion problems. Furthermore, the solution found by the on-

line stage is close to the optimal one for various tasks, while

being computed several orders of magnitude faster. Our ap-

proach is general, hence it can be applied to any other algo-

rithm with a strongly convex regularizer [11]. For example

the framework can be very easily extended to solve other

problems such as structure output prediction [23], to have

an MKL algorithm for structured output.

OBSCURE has a faster convergence rate as the number

of cues/kernels grows. Thus we expect to achieve better

performance with more discriminative features. A simple

feature selection technique such as cross-validation could

already be beneficial. On the other hand, our results show

that non-sparse models might get better performance (in

the sense of accuracy and speed). This is in agreement

with recent findings in [12]. As a last remark, we notice

that the disadvantageous results of MKL methods, reported

in [9], may be because those algorithms does not have a

proper multiple class formulation for the object categoriza-

tion problems. By using our method, MKL can still be an

efficient machine learning tool for cue combination tasks.
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