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Improving Control of Dexterous Hand Prostheses
Using Adaptive Learning

Tatiana Tommasi, Francesco Orabona, Claudio Castellini, and Barbara Caputo

Abstract—At the time of this writing, the main means of control
for polyarticulated self-powered hand prostheses is surface elec-
tromyography (SEMG). In the clinical setting, data collected from
two electrodes are used to guide the hand movements selecting
among a finite number of postures. Machine learning has been ap-
plied in the past to the SEMG signal (not in the clinical setting) with
interesting results, which provide more insight on how these data
could be used to improve prosthetic functionality. Researchers have
mainly concentrated so far on increasing the accuracy of sSEMG
classification and/or regression, but, in general, a finer control im-
plies a longer training period. A desirable characteristic would be
to shorten the time needed by a patient to learn how to use the
prosthesis. To this aim, we propose here a general method to reuse
past experience, in the form of models synthesized from previous
subjects, to boost the adaptivity of the prosthesis. Extensive tests on
databases recorded from healthy subjects in controlled and non-
controlled conditions reveal that the method significantly improves
the results over the baseline nonadaptive case. This promising ap-
proach might be employed to pretrain a prosthesis before shipping
it to a patient, leading to a shorter training phase.

Index Terms—Electromyography, human-computer interfaces,
learning and adaptive systems, prosthetics.

1. INTRODUCTION

N the prosthetics/rehabilitation robotics community, it is

generally understood nowadays [1]-[3] that advanced hand
prostheses are in dire need of accurate and reliable control
schemas to make them easy to use by the patient. Together
with excessive weight and low reliability, lack of control (in-
consistency between the desired and performed movements) is
the main reason why 30-50% of upper limb amputees do not use
their prosthesis regularly [4], although the exact factors leading
to abandonment of a prosthesis seem to be dependent on the
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Fig. 1. Dexterous hand prostheses. (From left to right) RSL Steeper’s Be-
Bionic (reproduced from www.bebionic.com), Vincent Systems’ Vincent hand
(www.handprothese.de), and Touch Bionics’s i-LIMB Ultra (www.touchbionics.
com).

age and status of each subject, still remaining to be thoroughly
investigated [5].

The force-controlled and polyarticulated hand prosetheses
that are currently being used in the clinical setting are not yet
comparable with nonprosthetic mechanical hands but enjoy a
high level of dexterity. They have five fingers and can potentially
achieve an infinite number of configurations. They include, i.e.,
the BeBionic hand by RSL Steeper, Vincent Systems’ Vincent
hand, and the i-LIMB by Touch Bionics (see Fig. 1). However,
control by the patient is poor, and it is still enforced using
two surface electromyography (SEMG) electrodes and complex
sequences of muscle contraction impulses; this is essentially an
old scheme used since the 1960s [6]-[8]. The patient must get
acquainted and proficient with this “language” if (s)he wants to
achieve a minimum degree of control over the prosthesis.

To overcome this drawback, a more “natural” form of con-
trol has been individuated and studied for two decades; namely,
SEMG has been revamped by the application of machine learn-
ing techniques. More electrodes (typically 5+) and complex sta-
tistical classification/regression techniques (e.g., support vector
machines [9], linear discriminants [10], [11], and neural net-
works [12]) allow, at least in principle, to more easily detect
what the patient wants to do. The word “natural” here is still
quite a misnomer, as it refers to the choice among a finite number
of predefined hand configurations, but this kind of control is still
much more natural than before, as each posture is achieved by
configuring one’s muscle remnants as they would be if the miss-
ing limb were still there. Recent results on amputees indicate
that even long-term patients can generate rather precise resid-
ual activity to the extent that there is essentially no statistically
significant difference in the classification/regression accuracy
attained by transradial amputees and intact subjects [9], [13].

In this paper, we concentrate upon a specific aspect of hand
prostheses control, namely, we try to reduce the training time,
i.e., the time required for adaptation of the prosthesis itself to
the patient. Anatomical similarity among humans intuitively
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suggests that good statistical models built in the past might be
proficiently reused when training a prosthesis for a new patient.
This idea cannot be naively enforced with standard learning
techniques, as shown at least in [14], where cross-subject anal-
ysis (i.e., using a model trained on a subject to do prediction
on a new subject) is performed with poor results. We present
here a more refined approach to the problem exploiting adaptive
learning in order to boost the training phase of a hand prosthesis
by reusing previous experience.

We build on our own previous work [15], which proposed
a principled method fo choose one from among multiple pre-
trained models on known subjects as a source for adaptation,
and to evaluate the right degree of closeness to the target task
for a new subject. This approach was based on an estimate of
the model generalization ability through the leave-one-out er-
ror that was minimized solving a nonconvex optimization task.
Here, we improve the original method in two key aspects: 1) we
constrain the new model, to be close to a linear combination of
pretrained models stored in the memory of the prosthesis; and
2) the learning process to define from whom and how much to
adapt is now defined through a convex optimization problem,
avoiding local minima issues. This leads to a bootstrapping in
the control abilities of the new subject, who can now acquire
control of the device faster than what would be achieved without
adaptation.

We test our method on two databases. The first is the one al-
ready described in [14] and [15], consisting of SEMG, posture,
and force signals gathered from ten intact subjects in various
(controlled and noncontrolled) laboratory situations. The sec-
ond is the NinaPro database [16], which is a publicly available
database that contains kinematic and SEMG data from the upper
limbs of 27 intact subjects, while performing a total of 52 hand
postures. The benefits are apparent and the goal is to be able
to ship a pretrained prosthesis to which the patient could very
quickly adapt, get comfortable with quickly, and be able to use
in daily life activities.

This paper is organized as follows. After reviewing related
work, in Sections II and III, we present our method. Section IV
describes the databases used, while Section V shows and dis-
cusses the results. Finally, Section VI contains conclusions and
ideas for future work.

A. Related Work

1) Using Surface Electromyography for Hand Prostheses:
sEMG detects muscle unit activation potentials, which typically
present a quasi-linear relation with the force exerted by the mus-
cle to which the electrode is applied. In the more specific case of
hand prostheses, several electrodes are applied to the forearm (or
stump), while the subject reaches specific hand configurations
(postures) and/or grabs a force sensor. The raw sEMG signal is
then preprocessed (filtered, rectified, and subsampled); features
are subsequently extracted from it and fed, together with force
values and labels denoting the postures, to a (usually supervised)
machine learning method. Hand postures can be classified ac-
cordingly, and the force applied is predicted using a regression
scheme. The two processes can happen simultaneously [17]. Up
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to 12 hand postures [13] have been classified with acceptable
accuracy, and there are strong hints [9], [13], [18]-[20] that with
data from transradial amputees, it may be possible to achieve
similar performance.

Comprehensive surveys can be found in [2], [3], and [21], and
the most recent results at the time of this writing are probably
those exposed in [22]-[24] and [25]. The use of sSEMG has been
widely explored, and a number of possible features have been
extracted and tested with many machine learning methods.

2) Adaptive Learning: One of the main assumptions of ma-
chine learning is that the training data on which any method
is learned and the test data on which it is verified are drawn
from the same distribution. However, in real problems, this is
not always the case, and adaptive learning is used to overcome
the distribution mismatch. In general, the goal of transfer learn-
ing [26] and domain adaptation [27] is to reuse information
gathered on some source task when solving a new target prob-
lem, and they, respectively, address two aspects of this problem.
Transfer learning focuses mostly on binary tasks and on the use
of helpful information across different categories (classes with
different labels). Domain adaptation considers the possibility of
exploiting common information among slightly different tasks
when the set of labels is the same. By applying domain adap-
tation, data collected in different domains can be used together
(source + target), or it is possible to leverage on pretrained
models built on rich training sets (source) when facing the same
problem in a new domain with few available samples (target).

Over the past few years, various techniques for domain adap-
tation and transfer learning have gained attention in natural
language processing [28], [29], computer vision [30]-[32], and
sentiment classification [33], [34]. Many adaptive methods have
been compared and benchmarked in [29]; however, most of them
are computationally inefficient because it is necessary to retrain
each time over old source and new target data. An approach
that does not use retraining, based on support vector machines
(SVMs), has been proposed in [35], but the authors do not ad-
dress the possibility that the known source model may be too
different from the new target one because of high variability
between the two domains.

3) Adaptive Learning on Surface Electromyography Data:
Adaptive learning can be used to augment the prostheses con-
trol and, in particular, to shorten the training time or aid the
collection of training data. One interesting attempt in this di-
rection can be found in [36], where two adaptive methods (one
supervised and the other unsupervised) are shown to dramati-
cally outperform a nonadaptive approach.

The solution of adapting from data collected on different sub-
jects is adopted in [37]. Decoupling between subject-dependent
and motion-dependent components is enforced on a limited
dataset, and an improvement over the baseline method is shown.
In [38], samples from multiple source subjects are combined
with the target subject samples. When learning the final clas-
sifier on the whole set of data, a weighting factor is added to
evaluate the real relevance of each source with respect to the
target task. The sensitivity of the method to this parameter is
evaluated empirically, but how to choose it is left as an open
problem.
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In [15], we proposed an approach that exploited previously
trained models on known subjects as a starting point when learn-
ing on a new one. This method chooses automatically the best
prior knowledge to use and how much to rely on it, overcoming
at the same time the problems present in [35] and [38]. Com-
pared with the work in [36] that performs adaptation during
the prediction task, our algorithm defines a way of boosting the
performance in training, i.e., before beginning the prediction.
We propose here to enlarge the approach in [15], even building
over our work in [31] that shares the same basic mathematical
framework. Specifically, we propose a novel multiclass adaptive
learning method that is able to rely upon many prior knowledge
models at the same time, with the aim of exploiting at the best
all the available information.

II. DEFINING THE ADAPTIVE MODEL

In this section, we describe the mathematical framework at
the basis of our adaptive learning method. We first introduce the
basic notation (see Section II-A); then, we present our algorithm
for online model adaptation from the best known subject (see
Section II-B) and how to enlarge it to exploit multiple known
subjects (see Sections II-C). We conclude by explaining how
to extend the described approach in the multiclass setting (see
Section II-D).

In the following, we denote with small and capital bold
letters, respectively, column vectors and matrices, e.g., a =
[a1,az2,...,ay]T € RY and A € RV with A;; correspond-
ing to the (7,4) element. The subscripts indicate specific rows
and columns. When only one subscripted index is present, it
represents the column index, e.g., A; is the ith column of the
matrix A.

A. Background

Assume x; € R™ is an input vector and y; € R is its asso-
ciated output. Given a set {z;,y; })*, of samples drawn from
an unknown probability distribution, we want to find a function
f(x) such that it determines the best corresponding y for any
future sample «. This is a general framework that includes both
regression and classification. The problem can be solved in var-
ious ways. Here, we will use kernel methods and, in particular,
least-squares support vector machines (LS-SVM) [39]. In LS-
SVM, the function f(x) is built as a linear model w - ¢(x) + b,
where ¢(+) is a nonlinear function mapping input samples to a
high-dimensional (possibly infinite-dimensional) Hilbert space
called feature space. Rather than being directly specified, the
feature space is usually induced by a kernel function K (x, '),
which evaluates the inner product of two samples in the feature
space itself, i.e., K(x,z') = ¢(x) - p(x'). A common kernel
function is the Gaussian kernel

K(z,z') = exp(—y[lz — 2/||?) (1)

that will be used in all our experiments.

The parameters of the linear model, i.e., w and b, are found by
minimizing a regularized least-squares loss function [39]. This
approach is similar to the well-known formulation of SVMs,

the difference being that the loss function is the square loss that
does not induce sparse solutions.

This formulation can be easily generalized to the multiclass
classification, where we have g = 1,..., G different classes.
Consider one model for each class, w, and b, that discriminates
one class against the others (i.e., one-versus-all). Hence, the
model ¢ is trained on the binary problem to distinguish class
g, which is considered positive, versus all the others, which are
considered negative. The predicted class for sample ¢ is then
defined as argmax, {w, - ¢(x;) + b, }.

A key concept that we will use is the one of leave-one-out
predictions [40]. Denote by y;, ¢ = 1, ..., N, the prediction on
sample ¢ when it is removed from the training set and by £(y, ) a
generic loss function that measures the loss of predicting § when
the true label is y. We have that - SN | £(y;, 7i;) is an almost
unbiased estimator of the classifier generalization error [41],
which is measured using /.

LS-SVMs make it possible to write the leave-one-out pre-
dictions in closed form and with a negligible additional com-
putational cost [40]. This property is useful to find the best
parameters for learning [e.g., v in (1)], and it will be used in our
adaptation method. Note that we use the same general formula-
tion to solve both regression and classification problems.

B. Model Adaptation From the Best Subject

Let us assume we have K pretrained models stored in mem-
ory, which are trained offline on data acquired on K different
subjects. When the prosthetic hand starts to be used by subject
K + 1, the system begins to acquire new data. Given the differ-
ences among the subjects’ arms as well as the placement of the
electrodes, these new data will belong to a new probability dis-
tribution, which is, in general, different from the K previously
modeled and stored. Still, as all subjects perform the same grasp
types, it is reasonable to expect that the new distribution will be
close to at least one of those already modeled; then, it should
be possible to use one of the pretrained models as a starting
point for training on the new data. We expect that, by doing so,
learning should be faster than using the new data alone. To solve
this problem, we generalize the adaptation approach proposed
in [35] for SVMs. The basic idea is to slightly change the reg-
ularization term of the SVM cost function so that the solution
will be close to the pretrained one. The optimization problem is

N
1 .
min - [[w — w| +C;&
subject to § >0, yi(w-d(z;) +b) >1-&§  (2)

where W is a pretrained model, and C' is a parameter to tradeoff
the errors and the regularization. In order to tune the closeness of
w to W, we introduce a scaling factor 3, weighing the pretrained
model. In addition, we use the square loss and, therefore, resort
to the LS-SVM formulation. In this way, the leave-one-out pre-
dictions can be evaluated in closed form, enabling automatic
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tuning of /3. The optimization problem reads now like this [15]
N
1 2, © 2
min o f|w — fw|” + = ;:1 &

subject to y; = w - ¢(x;) + b+ & (3)

and the corresponding Lagrangian problem is

N
1 . C
L£=gllw- pw|? + 5 &
i—1

N
> afw-g(@i) +b+& —y;} “4)

i=1

where a € R" is the vector of Lagrange multipliers. The opti-
mality conditions can be expressed as

or N
87W:0:>W:ﬁw+;ai¢(wi) 5)
oL N

0 a0 ©)
or

g, V= a =04 )
gfzoiéw"ﬂﬁ?+h+&fw:0. (8)

From (5), it is clear that the adapted model is given by the
sum of the pretrained model w (weighted by ) and a new
model w obtained from the new samples. Note that when (3 is
0, we recover the original LS-SVM formulation without any
adaptation to previous data. Using (5) and (7) to eliminate w
and £ from (8), we find that

N

S ad(a) - $l@i) + b+ o=y — W da). )
C

j=1

Denoting with K the kernel matrix, i.e., K;; = K(x;,x;) =
@(z;) - ¢(x;), the obtained system of linear equations can be
written more concisely in matrix form as

1 N
K+zl 1] [al] _[y-59y

17 0] [0 0
where y and ¥y are the vectors containing, respectively, the
label samples and the prediction of the previous model, i.e.,

y=1[y,-.,yn]", g=[W-d(x1),...,W-¢(zx)]". Thus,
the model parameters can be calculated with

a y— 0y
Hitdirsd
where P = M ', and M is the first matrix on the left in (10).
We now show that for (3), it is possible to write the leave-
one-out predictions in a closed formula (see the proof in
the Appendix). Let [a7,b]T = Py’ ,0]7 and [a"",V"]T =
P[y",0]" with @ = a’ + $a’. Then, we have the following.

(10)

)
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Proposition 1: The prediction g;, which is obtained on sample
¢ when it is removed from the training set, is equal to

"

al a’
Yi — 5 085

12
., 7P, 1

Notice that in the above formula, [ is the only parameter;
hence, it is possible to set it optimally in order to minimize the
sum of the leave-one-out errors £(y;, §; ), while at the same time
choosing the best pretrained model for adaptation. Moreover, a
depends linearly on (3; thus, it is straightforward to define the
learning model that is fixed once /3 has been chosen.

The complexity of the algorithm is dominated by the evalua-
tion of the matrix P, which must anyway occur while training;
thus, the computational complexity of evaluating the leave-one-
out errors is negligible, if compared with the complexity of train-
ing. As a last remark, we underline that the pretrained model w
can be obtained by any training algorithm, as far as it can be ex-
pressed as a weighted sum of kernel functions. The framework
is, therefore, very general.

C. Model Adaptation From Multiple Subjects

The approach described in the previous section has a main
drawback. Although many prior knowledge models are avail-
able, it uses only one of them, which is selected as the most
useful in terms of minimal leave-one-out errors. Even if the
pretrained models are not equally informative, relying on more
than one of them may be beneficial. To this goal, it is possi-
ble to define a new learning problem that considers the linear
combination of all the known models [31]

2 N
w— Y phwt +§;‘§3

o1
min =
W k=1
subjectto  y; = w - d(x;) + b+ &

b 2

13)

The original single coefficient 5 has been substituted with a
vector (3 containing as many elements as the number of prior
models K. For this formulation, the optimal solution is

K N
w = Zﬁk’ﬁvk + Zaiqﬁ(wi).
k=1 i=1

Here, w is expressed as a weighted sum of the pretrained models
scaled by the parameters 5" plus the new model built on the
incoming training data [31]. The leave-one-out prediction of
each sample 7 can again be written in closed form, similar to
Proposition 1, as

(14)

5)

where [@”" "7 = P[g*",0]", and §" is the vector that
contains the predictions of the kth previous model [W* -
d(x1),...,wF - @p(xn)]. As before, the leave-one-out er-
rors can be calculated and minimized to evaluate the best
weights 3*.
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Best Prior Model Multiple Prior Models — Different Weights for Different Classes -
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Fig. 2.

Three methods adopted to leverage information from multiple known subjects when learning on a new one. For all the known subjects, many SEMG

signal samples are available, while few sEMG signals are recorded from the new subject. (Left) Choosing only the best known subject and using its reweighted
model as a starting point for learning. (Center) Considering a linear combination of the known subjects with equal weight for all the grasp models of each subject.
(Right) Considering again a linear combination of all the known models but assign a different weight to each grasp model for each subject.

D. Multiclass Extensions

In case of classification problems, the methods discussed up
until here are suitable for binary tasks but can be extended to the
case of G classes using the one-versus-all formulation described
in Section II-A. We define the matrix Y € R“*" composed of
the columns Y';, where for each sample ¢, the vector Y'; has all
the components equal to —1 except for the y;th that is equal to
1. In the same way, define the matrix f’, which is composed
of the columns Y'; that contain the predictions generated by a
known multiclass model on the sample . For each sample 7, we
also obtain a vector of G leave-one-out predictions; we indicate
it with }N’i, and it is easy to show that it can be calculated as

?i:Yi—?—i+ﬂ%f (16)

where
(A", b] =[Y,0PT (17)
[A" b"] = [Y,0]PT. (18)

Here, A’, A” ¢ RE*N and b, 0 € R In case of multiple prior
models, we use the superscript & to indicate each of them, and
considering their linear combination, we get

/ K kA/‘/k
Yz - Yz - = + ﬂ - (19)
P ]; P

with

[A//k , b//k] — [Yk’ O]PT. (20)

III. LEARNING HOW MUCH TO ADAPT

The adaptive learning methods described above look for the
model parameters (w,b) once the value of the weight (3, or
the corresponding vector 3, has been chosen. Searching the
optimal [ defines a separate learning problem that depends
on the choice of the loss function ¢. As a result, we have an
indication of how much each of the pretrained models is reliable

for adaptation. In the following, we define how to face this issue
in the classification and regression cases; a general scheme of
the proposed solutions is shown in Fig. 2.

A. Classification

For a binary classification problem, and in case of a single
pretrained model, we can follow the approach proposed in [40]
and find 3 by minimizing leave-out-out errors using the logistic
loss function

1
14 Yi, gz = = .
(v, 60) 1+ exp(=10(gi — wi))
Note that the resulting objective function would be nonconvex
w.r.t. 3. When moving to the choice of multiple weights for all
the pretrained models, we can also overcome the nonconvexity

issue described above, by minimizing the loss function proposed
in [31]

2n

(y;, 9;) = max(1 — y;4;, 0). (22)

This is a convex upper bound to the misclassification loss, and
it also has a smoothing effect, similar to the logistic function in
(21).

However, in our application, we have multiple pretrained
models and G classes, corresponding to the different grasp types.
Hence, it is necessary to define a loss function over vectors,
which compose all these values to define a single estimate of
the multiclass error.

1) Best Prior Model: A first solution could be to consider

(YY) = !
o 1+ exp(—10(maxg 4y, {Y/gl} - Y/;m))

and to evaluate it separately for each of the k € {1,..., K}
pretrained models on the basis of (16), varying 5 with small
steps in [0, 1] (this is the approach used in [15]). The minimal
result identifies both the best known subject for adaptation and,
at the same time, the corresponding (. Still, this approach, as
(21), is nonconvex; thus, reaching the global optimum is not

(23)



212

computationally efficient. This solution is schematically de-
picted in Fig. 2 (left).

2) Multiple Prior Models: To consider multiple prior knowl-
edge models, we propose using (19) in the convex multiclass
loss [42]

Z(Yi,l?i) = max{l — }77“ + n;ax{f/;]i}, 0}. 24)

97#Yi

This loss is zero if the confidence value for the correct label is
larger by at least 1 than the confidence values assigned to the
rest of the labels. Otherwise, we suffer a loss that is linearly
proportional to the difference between the confidence value of
the correct label and the maximum among the confidence values
of the other labels. The final objective function is

1\{
min > ¢(Y;,Y;) subject to <1, gF>0. (@5
i ; ( ) subjectto [Bll2 <1, *>0. (25

The condition of having 3 in the intersection of the unitary
ball and the positive semiplane can be seen as a form of reg-
ularization, and it is a natural generalization of the original
constraint 5 € [0, 1] used in [15]. This constraint is necessary
to avoid overfitting problems that can happen when the number
of known models is large compared with the number of training
samples [31].

We implemented the optimization process using a simple
projected subgradient descendent algorithm, where at each iter-
ation, 3 is first projected onto the ly-sphere, ||3]|2 < 1, and then
onto the positive semiplane. The pseudocode is given in Algo-
rithm 1, where in line 8, 1{-} denotes the indicator function.
Fig. 2(center) describes this solution.

3) Different Weights for Different Classes: Until now, we
considered techniques that assign a unique weight to each known
subject. This means that the whole set of one-versus-all pre-
trained models for a subject are equally weighted. However, for
example, when learning the model for the first class, it may be
useful to give more weight in adaptation to the first subject than
to the second, while it could be the opposite when learning the
model for the second class, and so on. Hence, to have one more
degree of freedom and decide the adaptation specifically for
each class, we enlarge the set of weight parameters, introducing
the matrix B € R¥*¢ | where each row k € {1,..., K} con-
tains the vector ﬁ,{ with G elements, one for each class. This
approach is described in Fig. 2 (right).

The optimization problem is analogous to the one described
in (25), with a change in the constraints. Each class problem
is now considered separately; therefore, we have G conditions,
one for each of the columns B, of the B matrix; we impose
||Bg||2 < 1 and Bji > 0.

B. Regression

Our goal in using regression is the prediction of the force
applied by one subject in grasping, independent of the specific
kind of grasp performed. Thus, now the output y; for each
corresponding input x; is a continuous real value, rather than a
discrete one as in classification.
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Algorithm 1. Projected Sub-gradient Descent Algorithm
1 B=[B...85]«0

2: t+1

3: calculate A’ according to (17)
4: calculate A"* according to (20)

5: repeat
~ A’- K A/_/k )
6: Y»L<—Y.L—P—lz—|—2k=15kplﬂ VZ::[,...

N
7: g+ argmaxg;éyi{f’gi} , Vi=1,...,N
8: di(—l{l—}}yii+}7‘g:i>0},Vi=1,...,N

1"k 1"k
AVE —AUR)

o: ﬂ’“(—ﬂk—%zf\ildi(ip—i"
10: if ||3]]2 > 1 then

I1: B« B/|Bll2

12: end if

132 BF < max(B*, 0), Vk=1,...,K
14: t+—t+1

 Vk=1,....K

15: until convergence

Output: 8

Similar to what we showed before, it is possible to learn the
regression model relying on information from the closest known
subject or on the combination of multiple pretrained models.

1) Best Prior Model: We can use the leave-one-out pre-
diction in (12) to evaluate the square loss [mean square error
(MSE)]

’ "\ 2
Uy, 9i) = i—Nz'Q:(ai-&- ai>.
(Yi,9:) = (vi — %) P, ﬁBz

The choice of the square loss gives us, summing over i, a
quadratic function in (3, and the minimum is obtained using

n"

IARE
_ i=1 P;; Py

N N2’
> (3)

We use the constraint § > 0, just imposing 5 = 0 every time it
results negative. Hence, different from the classification case,
here we do not need any optimization procedure; the optimal (3 is
given by a closed formula. Once calculated the minimum value
of the summed square loss values for each k € {1,2,... K},
comparing all of them, we can identify the best known subject
to use for adaptation when learning the regression model on a
new subject.

2) Multiple Prior Models: To take advantage of all the avail-
able pretrained models, we can combine them linearly and
search for a vector of weights as in classification. Hence, the

(26)
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Fig. 3.
grasp. (Reproduced from [14].)

(a) (b) (©

(b)
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Three different grasp types recorded in the hand posture and force signal dataset [14]. (a) Index precision grip. (b) Other fingers precision grip. (c) Power

(e) ®

(@)

Fig. 4. Six different grasp types extracted from the Ninapro dataset [16]. (a) Tip pinch grasp. (b) Prismatic four fingers grasp. (c) Power grasp. (d) Parallel
extension grasp. (e) Lateral grasp. (f) Opening a bottle with a tripod grasp. (Reproduced from [16].)

loss function ¢ can now be defined as

Uy, 0i) = (

Adding also the condition ||3||s < 1, we can find the best 3
vector that minimizes the loss with a quadratically constrained
quadratic program solver. In our experiments, we used CVX
[43], which is a package for specifying and solving convex
programs in MATLAB.

/

P

27)

IV. EXPERIMENTAL DATA

To test the effectiveness of our model adaption techniques,
we use two datasets.

A. Hand Posture and Force Signals [14]

This database of SEMG/hand posture/force signals has al-
ready been presented in [14] and used in [14] and [15]. (The
following description of the database is very concise; see the
above cited paper(s) for more details.) The signals are collected
from ten intact subjects (two women and eight men) using seven
SEMG electrodes (Aurion ZeroWire wireless) placed on the
dominant forearm according to the medical literature [44]. A
FUTEK LMDS500 force sensor [45] is used to measure the force
applied by the subject’s hand during the recording. Data are
originally sampled at 2 kHz. Each subject starts from a rest con-
dition (SEMG baseline activity) and then repeatedly grasps the
force sensor using, in turn, three different grips, which are visi-
ble in Fig. 3. The subject either remains seated and relaxed while
performing the grasps or is free to move (walk around, sit down,
stand up, etc.). These phases are referred to as Still-Arm (SA) and

Free-Arm (FA), respectively. Each grasping action is repeated
along 100 s of activity. The whole procedure is repeated twice.
The root mean square of the signals along 1 s (for classification)
and 0.2 s (for regression) is evaluated; subsampling at 25 Hz
follows. Samples for which the applied force is lower than 20%
of the mean force value obtained for each subject are labeled
as “rest” class. After this preprocessing, we got around 15 000
samples per subject; each sample consists of a seven-element
SEMG signal vector and one force value.

B. Ninapro [16]

This database has been presented in [16] and already used
in [46]. It contains kinematic and sSEMG data from the upper
limbs of 27 intact subjects (seven women and 20 men), while
performing 12 finger, nine wrist, 23 grasping and functional
movements, plus eight isometric, isotonic hand configurations.
Data are collected using ten surface SEMG electrodes (double-
differential OttoBock MyoBock 13E200). Eight are placed just
beneath the elbow at fixed distance from the radio-humeral joint,
while two are on the flextor and extensor muscles. Each subject
sits comfortably on an adjustable chair in front of a table and is
instructed to perform ten repetitions of each movement by imi-
tating a video, alternated with a rest phase. The SEMG electrodes
are connected to a standard data acquisition card, sampling the
signals at 100 Hz, and provide an RMS rectified version of the
raw sSEMG signal. (For a more detailed description of the dataset,
see [16] and [46].) We focused only on the grasp and functional
movements extracting six actions: tip pinch, prismatic four fin-
gers, power, parallel extension, lateral, and opening a bottle with
a tripod grasp (see Fig. 4). Each of them belongs to a different
branch of a hierarchy containing all the dataset hand postures,
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and the first three grasps are the most similar to the ones con-
sidered in [14]. We randomly extracted two sets of 10 and 20
subjects from the dataset and performed classification experi-
ments on the described seven class (six grasps plus rest) problem
considering the mean absolute value of the SEMG signal as time-
domain features [46]. We repeated the preprocessing and data
split procedure described in [46] with an extra subsampling of
the “rest” data to get a class-balanced setting.

V. EXPERIMENTAL RESULTS

As already mentioned in Section II-B, our working assump-
tion is to have K pretrained models stored in memory; new
data come from subject K + 1 and the system starts training to
build the (K + 1)th model. The performance is then evaluated
using unseen data from subject K + 1. To simulate this scenario
and to have a reliable estimation of the performance, we use a
leave-one-out approach. Out of the 10 (20) subjects for which
we have data recordings, we train 9 (19) models offline. These
correspond to the K stored models in memory, while data from
the remaining subject are used for the adaptive learning of the
(K + 1th model. This procedure is repeated 10 (20) times, us-
ing in turn all the recorded subjects for the adaptive learning of
the model.

We name the proposed adaption methods:

1) Best-Adapt: adaptive learning starting from the best prior
knowledge model (method originally presented in [15]
and revised here in Section I1I-A1);

2) Multi-Adapt: adaptive learning starting from a linear com-
bination of the known models (see Section I1I-A2);

3) Multi-perclass-Adapt. adaptive learning (for classifica-
tion) starting from a linear combination of the known
models with a different weight for each class (see
Section I1I-A3).

To assess the performance of all these methods, we compare

them with the following baseline approaches:

1) No-Adapt: This is plain LS-SVM using only the new data
for training, as it would be in the standard scenario without
adaption.

2) Prior Average: This consists of using only the pretrained
models without updating them with the new training data.
We consider their average performance.

3) Prior Start: This corresponds to the performance of the
best model chosen by Best-Adapt at the first training step.

4) Prior Test: This is the result that can be obtained a pos-
teriori, comparing all the prior knowledge models on the
test set and choosing the best one.

As a measure of performance, for classification, we use the
standard classification rate; for regression, the performance in-
dex is the correlation coefficient evaluated between the predicted
force signal and the real one. Although we minimized the MSE
in the regression learning process, the choice of the correla-
tion coefficient is suggested by a practical consideration. When
driving a prosthesis, or even a nonprosthetic mechanical hand,
we are not interested in the absolute force values desired by
the subject. Mechanical hands usually cannot apply as much
force as human hands do, for obvious safety reasons, or e.g., in
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teleoperation scenarios, they could be able to apply much more
force than a human hand can. As already done, e.g., in [9], [14],
and [17], we are instead concerned with getting a signal which
is strongly correlated with the subject’s will. The significance
of the comparisons between the methods is evaluated through
the sign test [47].

To build the pretrained models, we used the standard SVM
algorithm. All the parameters to be set during training (C' and ~y
of the Gaussian kernel) were chosen by cross validation. Specif-
ically, when the subject k£* is the new problem, this is excluded
form the dataset, and the parameters are chosen over the remain-
ingset C = {1,..., K\k*}, looking for the values that produce
on average the best recognition rate or correlation coefficient by
learning on each subject & in K and testing on {IC\k*, k}.

A. Hand Posture and Force Signals [14]

For the experiments running on the dataset described in [14],
the training sequences are random subsets from the entire dataset
of the new subject, i.e., they are taken without considering the
order in which they were acquired. We considered 24 succes-
sive learning steps; for each of them, the number of available
training samples increases by 30 elements, reaching a maximum
of 720 samples. The test runs over all the remaining samples.
We conducted three sets of experiments, considering different
prior knowledge-new problem couples: SA-SA, FA-FA, and
SA-FA. In the first two cases, we have consistent recording
conditions among the source and the new target problem. The
last case reproduces the more realistic scenario where the prior
knowledge is built on data recorded on subjects in laboratory-
controlled conditions, while the new subject moves freely. We
both classify the grasp type and predict the force measured by
the force sensor.

Fig. 5 (left) reports the classification rate obtained at each step
when using SA-SA data. The plot shows that Multi-perclass-
Adapt outperforms both the baselines No-Adapt, Priors, and all
the other adaptive learning methods. The difference between
Multi-perclass-Adapt and Best-Adapt shows an average advan-
tage in recognition rate of around 2% (p < 0.03). The gain
obtained by Multi-perclass-Adapt with respect to No-Adapt
(p < 0.003) stabilizes around 5% for 500-720 training samples.

Analogous results are obtained when considering FA-FA
data. Fig. 5 (center) reports the classification rate results in
this setting. Multi-perclass-Adapt shows again the best perfor-
mance, but now the advantage with respect to Best-Adapt is
significant (p < 0.03) only for less than 100 training samples.
Multi-perclass-Adapt outperforms No-Adapt (p < 0.03) with a
gain of 4% in recognition rate for 500-720 samples.

Finally, Fig. 5 (right) shows the SA—FA results. Here, the sta-
tistical comparison among Multi-perclass-Adapt, Best-Adapt,
and No-Adapt is the same as in the FA—FA case.

Analyzing Fig. 5 as a whole, we can state that all the pro-
posed adaptive methods outperform learning from scratch with
the best results obtained when exploiting a linear combination
of pretrained models with a different weight for each known
subject and each class (Multi-perclass-Adapt). Moreover, we
notice that learning with adaption with 30 training samples
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Hand posture and force signals dataset [14]. Correlation coefficient obtained averaging over all the subjects as a function of the number of samples in the

training set. The title of each figure specifies if the data used as source and target are registered in Still-Arm (SA) or Free-Arm (FA) setting.

performs almost like No-Adapt with around 300 samples. Con-
sidering the acquisition time, this means that the adaptive meth-
ods are almost ten times faster than learning from scratch. Using
the prior knowledge by itself appears to be a good choice if only
very few training samples are available but loses its advan-
tage when the dimension of the training set increases. Passing
from SA-SA and FA-FA to SA-FA, we also notice that the
results for Prior Average show a small drop (46.3%, 45.5%, and
44.3%) related to the change in domain between the data used
for pretrained model and the one used for the new subject. The
increasing difficulty of the task can also be evaluated by the
progressive decrease in performance of Multi-perclass-Adapt at
the very first step in the three cases: SA-SA 63.6%, FA-FA
62.7%, and SA-FA 60.0%.

The corresponding regression results are reported in Fig. 6.
From the plot on the left, we notice that, in the SA—SA case, both
the adaptive learning methods outperform No-Adapt (p < 0.03).
However, here Multi-Adapt and Best-Adapt perform almost
equally (no statistical significant difference).

Fig. 6 (center) shows that Best-Adapt is slightly worse than
Multi-Adapt when passing to the FA-FA setting. Still, the two
methods are statistically equivalent, and they show a significant
gain with respect to No-Adapt only for more than 200 training
samples (p < 0.03).

The problem becomes even harder in the SA-FA case [see
Fig. 6 (right)]; here, Multi-Adapt outperforms No-Adapt only
for more than 500 training samples (p < 0.03).

Globally, the increasing difficulty of the three regression tasks
passing from left to right in Fig. 6 is demonstrated by the general

drop in performance. Although we decided to show the corre-
lation coefficient results, the corresponding MSE would lead to
the same conclusions.

B. Ninapro [16]

We randomly shuffled the samples of the Ninapro dataset, and
considered 36 learning steps adding 30 training samples each
time until a maximum of 1080 data was achieved.

Fig. 9 (left) reports the obtained classification rate at each step
when considering ten subjects for the six grasp postures plus rest.
The plot shows that all the adaptive methods perform almost like
No-Adapt; in particular, for less than 200 samples, there is no
statistical difference between learning from scratch, learning
with adaption, or using the prior knowledge directly (the fairest
comparison is with Prior Average and Prior Start). It is important
to remark that the “few sample” range grows together with
the number of considered classes. The samples are selected
randomly, and a minimum amount of data per class is needed to
get meaningful classification results. Only Multi-perclass-Adapt
outperforms No-Adapt (p < 0.05) with an average advantage of
2.5% in recognition rate for more than 200 samples.

Fig. 9 (right) shows the corresponding results in the case
of 20 subjects. On average, No-Adapt and Prior Average
perform almost equally to the previous case (with ten sub-
jects), showing that the average learning capability per sub-
ject is almost stable in a fixed range. On the other hand, Prior
Test and Prior Start present an increase in performance. The
higher the number of available prior models, the higher the
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Hand posture and force signals dataset [14]. Classification and regression in the SA—SA setting for the best and worst subjects. With best and worst, we

mean the subjects for which the difference in performance between learning with adaption and learning from scratch is, respectively, maximum and minimum.
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Hand posture and force signals dataset [14]. Maps of the beta values for the three adaptive methods in classification SA—SA, obtained for 300 training

samples. The title of each figure indicates the adaptive method that produced the corresponding beta weights, in particular for Multi-perclass-Adapt we are showing
the average values over the four classes (three grasp postures plus rest). Rows 1 and 9 in all the matrices correspond, respectively, to the best and worst subjects in

classification considered in Fig. 7, first and second plots from the left.

probability of finding useful information for the new problem.
Moreover, here Multi-perclass-Adapt outperforms both Best-
Adapt and No-Adapt (p < 0.001) with an average gain of 6%
with respect to learning from scratch.

C. Discussion

As a general remark, we can state that the three proposed
adaptive methods (i.e., Multi-perclass-adapt, Multi-Adapt, and
Best-Adapt) improve the learning performance to different ex-
tents if prior knowledge contains useful information for the new
task, and no harm if a good match between the data of the new
subject and the old source subjects is found. To further support
this statement, Fig. 7 shows the classification and regression re-
sults on SA-SA data, respectively, for the subjects that have the
maximum (best) and the minimum (worst) difference in recog-
nition and regression performance with adaptation compared to
No-Adapt. The worst case subject represents the paradigmatic
case of no previous models matching the current distribution;
as a consequence, the parameter 3 (3) is set automatically to
a small value (to a vector of small norm). In this case, there is
essentially no transfer of prior knowledge. More insight on this
point is given by Fig. 8. Here, we are mapping the beta values
for each adaptive model in a specific learning step (300 training
samples) of the classification SA-SA experiment. Best-Adapt
chooses only one prior model as reference, while Multi-Adapt
can rely on more than one known subject. For Multi-perclass-
Adapt, we show the average beta values over the four classes
(three grasps plus rest). The results are consistent to each other:
e.g., for subject 1 (first row in the matrices), all the adaptive

methods choose subject 2 as very relevant, Multi-Adapt gives
credit also to subject 8 and the same happens for Multi-perclass-
Adapt that has more freedom in weighting each class and finds
also subject 9 a bit useful. Subject 1 corresponds to the best sub-
ject, with the corresponding classification performance reported
in Fig. 7 (first from the left). Subject 9 is instead the worst one
(see Fig. 7 second from the left), and the ninth row of all the
matrices of Fig. 8 actually indicates that all the beta values are
small.

It is reasonable to claim that the overall performance of the
adaptive methods would increase along with the number of
stored models, since this would mean a larger probability of
finding matching pretrained models. This is confirmed by the
results on the Ninapro dataset. In the long run, a large database
of sSEMG signals and force measures, with subjects possibly
categorized (per age, sex, body characteristics, etc.) would def-
initely help getting uniformly better performance.

We point out here that the direct use of prior knowledge on a
new problem is only partially helpful without an appropriate way
to 1) choose the best prior knowledge model, and 2) weigh and
combine it with the new information. In fact, Prior Test shows
that possibly tuning on the test, one prior knowledge model
useful for the new problem could be found, but its usefulness
declines with the number of available training samples. On the
other hand, the Prior Average line corresponds to an attempt to
directly use a flat combination of all the pretrained models on a
new subject. The obtained performance shows that this is not a
good solution.

Let us also briefly discuss the choice of the learning parameter
C'. Here, we followed the standard approach in the community
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each figure indicates the number of subjects and hand postures considered.

and kept the parameter C' fixed using the best value obtained
from cross validation on the known subjects. Still, one might
argue that the best way to define it is to optimize it by using the
available training samples of the target subject, separately for
each learning approach. For the proposed adaptive methods, this
would imply defining C' together with (3, leading to a nonconvex
problem and a great increase in computational complexity.

VI. CONCLUSION

The results presented in this paper clearly show that machine-
learning-based classification and regression applied to surface
EMG can be improved by means of reusing previous knowledge.
In particular, we start from SVM models previously built by
training on a pool of human subjects to decrease the training
time of an LS-SVM to new subjects.

All the proposed adaptive methods show a significant gain in
recognition rate for grasp-type classification and in correlation
coefficient for regression when predicting the applied force, with
respect to learning from scratch on the new subject. We note
that the classification error/regression accuracy values obtained
in our experiments are in many cases below the best results
shown in the competing literature (an almost comprehensive
table appears in [3, p. 725]), but the point here is to perform the
comparison with nonadaptive baselines.

A comprehensive analysis of the practical applicability of
our methods on real patients is out of scope here; hopefully,
however, our results show that the presented method can be
used in any (SEMG classification/regression) scenario.

The overall idea is that a prosthesis could be embedded with
additional, preexisting knowledge before being shipped out to
a new patient. This needs to be done once and for all and,
most likely, for a large pool of healthy subjects and/or amputees
of diverse condition, age and type of operation, and degree of
muscle remnant fitness. The fact that the free-arm condition
consistently benefits as well from the proposed technique—
essentially to the same extent as the controlled one—is a very
promising result, hinting that one could potentially pretrain a
prosthesis in a laboratory and then ship it out and still give a
significant benefit to the patient with respect to the learning-
from-scratch case.
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The databases we used consist of intact subjects only, but
it is believed that transradial amputees can generate sim-
ilarly accurate signals ([19] is the most recent result on
this topic); therefore, this seems not to be a major objec-
tion to the applicability of the method. The project NinaPro
(http://www.idiap.ch/project/ninapro/) is currently concerned
with collecting such a large database of mixed subjects. If con-
firmed on data acquired from amputees, the current result could
pave the way to a significantly higher acceptance of myopros-
theses in the clinical setting. As future work, it would also be
interesting to enlarge the presented approaches to more specific
ongoing learning conditions on the new subject, covering the
hypothesis of an increased number of hand postures.

APPENDIX
CLOSED FORMULA FOR THE LEAVE-ONE-OUT PREDICTION

We show here that, following the same steps presented in [40],
it is possible to demonstrate Proposition 1, obtaining the closed
formula for the leave-one-out prediction in (12). We start from

al _|y—PBy
w3 =[]
and we decompose M into block representation, isolating the
first row and column as follows:

M- {K+éI 1} _ [mu

(28)

17 0 my 29

m? }
My ]
Let a(_;) and b _;) represent the parameters of LS-SVM during
the ith iteration of the leave-one-out cross-validation procedure.
In the first iteration, where the first training sample is excluded,
we have

(30)

where P(fl) = M(__ll)’ y(fl) - [y27 ) yN7O]T’ and @(71) -
W - ¢(x2),...,w - ¢(xx),0]”. The leave-one-out prediction

for the first training sample is then given by
- a
g1 =m] {bf ﬂ oW dlan) (1)

=m{ P (Y1) — BY1) +BW - d(x1). (32)
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Considering the last NV equations in the system in (28), it is clear
that [m; M(_y][a”,b]" = (y(_y) — BY (1)), and therefore

gl = m{P<,1) [mlM(,l)][al, ey aN7b]T + ﬁW/ : qS(:cl)
= mlTP<,1)m1a1—|—m1T [ag,...,an,b]" + Bw' - ¢(x;).
(33)

Noting from the first equation in the system in (28) that y; —
pw' - ¢(x1) = myra; +mi [ay,...,an,b]", we have

g1 =y —a(mi —m{ P_;ymy). (34)

Finally, using P = M ! and applying the block matrix inver-
sion lemma, we get

! —p 'y Py

P= _
—u 1P(,1)m1T

Py +p ' PrymimPy,
where © = mj; — mlTP(,l)ml, and noting that the system of
linear equations (28) is insensitive to permutations of the order-
ing of the equations and of the unknowns, we have

Q;

P

Let a = a' + Ba”, [a V" = P[y",0]", and [a"",V"]" =
P [QT, 0]7'; from the above equation, we get

Ui = Yi (35)

/ "

a a

0=y — —& . 36
Yi =Yi P +3 P, (36)
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