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Abstract. Despite the increasing interest towards domain adaptation
and transfer learning techniques to generalize over image collections and
overcome their biases, the visual community misses a large scale testbed
for cross-dataset analysis. In this paper we discuss the challenges faced
when aligning twelve existing image databases in a unique corpus, and we
propose two cross-dataset setups that introduce new interesting research
questions. Moreover, we report on a first set of experimental domain
adaptation tests showing the effectiveness of iterative self-labeling for
large scale problems.
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1 Introduction

In the last two decades computer vision research has lead to the development of
many efficient ways to describe and code the image content, and to the definition
of several highly performing pattern recognition algorithms. In this evolution a
key role was held by different image collections defined both as source of training
samples and as evaluation instruments. The plethora of datasets obtained as
legacy from the past, together with the modern increasing amount of freely
available images from the Internet, pose new challenges and research questions.
On one side there is a growing interest for large scale data [BI30], i.e. how to mine
a huge amount of information and how to use it to tackle difficult problems that
were not solvable or not even thinkable before [4]. On the other side there is
the dataset bias problem [3312032]. Every finite image collection tends to be
biased due to the acquisition process (used camera, lighting condition, etc.),
preferences over certain types of background, post-processing elaboration (e.g.
image filtering), or annotator tendencies (e.g. chosen labels). As a consequence
the same object category in two datasets can appear visually different, while
two different labels can be assigned to the exact same image content. Moreover,
not all the datasets cover the same set of classes, thus the definition of what
an object “is not” changes depending on the considered collection. The existing
curated image datasets were created for a wide variety of tasks, but always with
the general purpose of capturing the real visual world. Although each collection
ends up covering only a limited part of it, by reorganizing the content of many
collections we can define a rich knowledge repository.

In this work we discuss the challenges faced when aligning twelve existing
image datasets (see Figure [I) and we propose two data setups that can be used
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Fig.1. We show here one image example extracted from each of the 12 datasets
(columns) for 7 object categories (rows): mug, bonsai, fire hydrant, car, cow, bottle,
horse. The empty positions indicate that the corresponding dataset is not annotated
for the considered class.

both as large scale testbeds for cross-dataset analysis and as a information source
for efficient automatic annotation tools.

The rest of the paper is organized as follows. Section [2] gives a brief overview
of related works that focused on the dataset bias problem and that proposed
domain adaptation solutions. Section [3| introduces the cross-dataset collection,
while section [ reports on the results of a preliminary evaluation of domain
adaptation methods over it. We conclude the paper in section [5| pointing to
possible directions of future research.

2 Related Work

The existence of several data related issues in any area of automatic classifi-
cation technology was first discussed by Hand in [I7] and [18]. The first sign
of peril in image collections was indicated in presenting the Caltech256 dataset
[16] where the authors recognized the danger of learning ancillary cues of the
image collection (e.g. characteristic image size) instead of intrinsic features of
the object categories. However, only recently this topic has been really put un-
der the spotlight for computer vision tasks by Torralba and Efros [33]. Their
work pointed out the idiosyncrasies of existing image datasets: the evaluation
of cross-dataset performance revealed that standard detection and classification
methods fail because the uniformity of training and test data is not guaranteed.
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This initial analysis of the dataset bias problem gave rise to a series of works
focusing on how to overcome the specific image collection differences and learn
robust classifiers with good generalization properties. The proposed methods
have been mainly tested on binary tasks (object vs rest) where the attention is
focused on categories like car or person which are common among six popular
datasets: SUN, Labelme, Pascal VOC, Caltech101, Imagenet, and MSRC [33]. A
further group of three classes was soon added to the original set (bird, chair and
dog) defining a total of five object categories over the first four datasets listed
before [20J8]. A larger scale analysis in terms of categories was proposed in [28]
by focusing on 84 classes of Imagenet and SUN, while a study on how to use
weakly labeled Bing images to classify Caltech256 samples was proposed in [IJ.
Finally the problem of partially overlapping label sets among different datasets
was considered in [32].

Together with the growing awareness about the characteristic signature of
each existing image set, the related problem of domain shift has also emerged.
Given a source and target image set with different marginal probability distri-
butions, any learning method trained on the first will present lower performance
on the second. In real life settings it is often impossible to have full control on
how the test images will differ from the original training data and an adaptation
procedure to remove the domain shift is necessary. An efficient (and possibly
unsupervised) solution is to learn a shared representation that eliminates the
original distribution mismatch. Different methods based on subspace data em-
bedding [I3[T1], metric [29/31] and vocabulary learning [27] have been presented.
Recently several works have also demonstrated that deep learning architectures
may produce domain invariant descriptors through highly non-linear transfor-
mation of the original features [6]. Domain adaptation algorithms have been
mostly evaluated on the Office dataset [29] containing 31 office-related object
categories from three domains. A subset of the Caltech256 dataset was later
included defining a setting with 10 classes and four different data sources [L3].

Despite their close relation, visual domain and dataset bias are not the same.
Domain adaptation solutions have been used to tackle the dataset bias problem,
but domain discovery approaches have shown that a single dataset may contain
several domains [I9] while a single domain may be shared across several datasets
[15]. Moreover, the domain shift problem is generally considered under the co-
variate shift assumption with a fixed set of classes shared by the domains and
analogous conditional distributions. On the other hand, different image datasets
may contain different object classes.

Currently the literature misses a standard testbed for large scale cross-dataset
analysis. We believe that widening the attention from few shared classes to the
whole dataset structures can reveal much about the nature of the biases, and
on the effectiveness of the proposed algorithmic solutions. Moreover it allows to
extend the experience gained by years of research on each image collection to
the others. Finally, the use of multiple sources has proven to be beneficial in
reducing the domain shift and improve transfer learning for new tasks [26].
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3 A Large Scale Cross-Dataset Testbed

In this section we describe the steps taken to define the proposed large scale
cross-dataset testbed. We start with a brief description of the considered image
datasets (section and we give an overview of the merging process (section
, presenting two data setups (section [3.3)).

3.1 Collection Details
We focus on twelve datasets that were created and used before for object cate-
gorization.

ETHS0 [23] was created to facilitate the transition from object identification
(recognize a specific given object instance) to categorization (assign the correct
class label to an object instance never seen before). It contains 8 categories
and 10 toy objects for every category. Each object is captured against a blue
background and it is represented by 41 images from viewpoints spaced equally
over the upper viewing hemisphere.

Caltech101 [I0] contains 101 object categories and was the first large scale col-
lection proposed as a testbed for object recognition algorithms. Each category
contain a different number of samples going from a minimum of 31 to a maxi-
mum of 800. The images have little or no clutter with the objects centered and
presented in a stereotypical pose.

Caltech256 [16]. Differently from the previous case the images in this dataset
were not manually aligned, thus the objects appear in several different poses.
This collection contains 256 categories with a minimum of 80 and a maximum
of 827 images.

Bing [I] contains images downloaded from the Internet for the same set of 256
object categories of the previous collection. Text queries give as output several
noisy images which are not removed, resulting in a weakly labeled collection.
The number of samples per class goes from a minimum of 197 to a maximum of

993.

Animals with Attributes (AwA) [22] presents a total of 30475 images of
50 animal categories. Each class is associated to a 85-element vector of numeric
attribute values that indicate general characteristics shared between different
classes. The animals appear in different pose and at different scales in the images.

a-Yahoo [9]. As the previous one, this dataset was collected to explore attribute
descriptions. It contains 12 object categories with a minimum of 48 and a max-
imum of 366 samples per class.

MSRCORID [24]. The Microsoft Research Cambridge Object Recognition Im-
age Database contains a set of digital photographs grouped into 22 categories
spanning over objects (19 classes) and scenes (3 classes).

PascalVOC2007 [7]. The Pascal Visual Object Classes dataset contain 20 ob-
ject categories and a total of 9963 images. Each image depicts objects in realistic
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scenes and may contain instances of more than one category. This dataset was
used as testbed for the Pascal object recognition and detection challenges in
2007.

SUN [34] contains a total of 142165 picturesﬂ and it was created as a compre-
hensive collection of annotated images covering a large variety of environmental
scenes, places and objects. Here the objects appears at different scales and po-
sitions in the images and many of the instances are partially occluded making
object recognition and categorization very challenging.

Office [29]. This dataset contains images of 31 object classes over three domains:
the images are either obtained from the Amazon website, or acquired with a high
resolution digital camera (DSLR), or taken with a low resolution webcam. The
collection contains a total of 4110 images with a minimum of 7 and a maximum
of 100 samples per domain and category.

RGB-D [2]] is similar in spirit to ETH80 but it was collected with a Kinect
camera, thus each RGB image is associated to a depth map. It contains images
of 300 objects acquired under multiple views and organized into 51 categories.

Imagenet [5]. At the moment this collection contains around 21800 object
classes organized according to the Wordnet hierarchy.

3.2 Merging Challenges

There are two main challenges that must be faced when organizing and using at
once all the data collections listed before. One is related to the alignment of the
object classes and the other is the need for a shared feature representation.

Composing the datasets in a single corpus turned out to be quite difficult.
Even if each image is labeled with an object category name, the class alignment
is tricky due to the use of different words to indicate the very same object, for in-
stance bike vs bicycle and mobilephone vs cellphone. Sometimes the different nu-
ance of meaning of each word are not respected: cup and mug should indicate two
different objects, but the images are often mixed; people is the plural of person,
but images of this last class often contain more than one subject. Moreover, the
choice of different ontology hierarchical levels (dog vs dalmatian vs greyhound,
bottle vs water-bottle vs wine-bottle) complicates the combination. Psychological
studies demonstrated that humans prefer entry-level categories when naming
visual objects [25], thus when combining the datasets we chose “natural” labels
that correspond to intermediate nodes in the Wordnet hierarchy. For instance,
we used bird to associate humming bird, pigeon, ibis, flamingo, flamingo head,
rooster, cormorant, ostrich and owl, while boat covers kayak, ketch, schooner,
speed boat, canoe and ferry. In the cases in which we combine only two classes
we keep both their names, e.g. cup & mug.

! Here we consider the version available in December 2013 at http://labelme.csail.
mit.edu/Release3.0/Images/users/antonio/static_sun_database/ and the list
of objects reported at http://groups.csail.mit.edu/vision/SUN/.


http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/
http://labelme.csail.mit.edu/Release3.0/Images/users/antonio/static_sun_database/
http://groups.csail.mit.edu/vision/SUN/
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Fig. 2. Three cases of Imagenet categories. Left: some images in class chess are wrongly
labeled. Middle: the class planchet or coin blank contains images that can be more easily
labeled as coin. Right: the images highlighted with a red square in the class truncated
pyramid do not contain a pyramid (best viewed in color and with magnification).

saddle skateboard
Caltech256 SUN SUN

Caltech256

Fig. 3. Three categories with labeling issues. The class bat has different meanings both
across datasets and within a dataset. A saddle can be a seat to ride a horse or a part
of a bicycle. A skateboard and a snowboard may be visually similar, but they are not
the same object

In the alignment process we came across a few peculiar cases. Figure 2] shows
samples of three classes in Imagenet. The category chess board does not exist at
the moment, but there are three classes related to the word chess: chess master,
chessman or chess piece, chess or cheat or bromus secalinus (we use “or” here
to indicate different labels associated to the same synset). This last category
contains only few images but some of them are not correctly annotated. The
categories coin and pyramid are still not present in Imagenet. For the first,
the most closely related class is planchet or coin blank, which contains many
example of what would be commonly named as a coin. For the second, the most
similar truncated pyramid contains images of some non-truncated pyramids as
well as images not containing any pyramids at all. In general, it is important to
keep in mind that several of the Imagenet pictures are weakly labeled, thus they
cannot be considered as much more reliable than the corresponding Bing images.
Imagenet users are asked to clean and refine the data collection by indicating
whether an image is a typical or wrong example.

We noticed that the word bat usually indicates the flying mammal except in
SUN where it refers to the baseball and badminton bat. A saddle in Caltech256 is
the supportive structure for a horse rider, while in SUN it is a bicycle seat. Tennis
shoes and sneakers are two synonyms associated to the same synset in Imagenet,
while they correspond to two different classes in Caltech256. In SUN, there are
two objects annotated as skateboards, but they are in fact two snowboards. Some
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Fig. 4. Stack histogram showing the number of images per class of our cross-dataset
dense setup.
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Fig. 5. Stack histogram showing the number of images per class of our cross-dataset
sparse setup (best viewed in color and with magnification).

examples are shown in Figure [3] We disregarded all these ambiguous cases and
we do not consider them in the final combined setups.

Although many descriptors have been extracted and evaluated separately
on each image collection, the considered features usually differ across datasets.
Public repositories with pre-calculated features exist for Caltech101 and Cal-
tech256, Bing and Caltech256, and for a set of five classes out of four datasetsﬂ
Here we consider the group of twelve datasets listed in the previous section and
extracted the same feature from all of them defining a homogeneous reference
representation for cross-dataset analysis.

3.3 Data Setups and Feature Descriptor

Dense set. Among the considered datasets, the ones with the highest number of
categories are Caltech256, Bing, SUN and Imagenet. In fact the last two are open
collections progressively growing in time. Overall they share 114 categories: some
of the 256 object categories are missing at the moment in Imagenet but they
are present in SUN (e.g. desk-globe, fire-hydrant) and vice-versa (e.g. butterfly,

2 Available respectively at http://files.is.tue.mpg.de/pgehler/projects/
iccv09/ http://vlg.cs.dartmouth.edu/projects/domainadapt/ http:
//undoingbias.csail.mit.edu/


http://files.is.tue.mpg.de/pgehler/projects/iccv09/
http://files.is.tue.mpg.de/pgehler/projects/iccv09/
http://vlg.cs.dartmouth.edu/projects/domainadapt/
http://undoingbias.csail.mit.edu/
http://undoingbias.csail.mit.edu/
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pram). Out of this shared group, 40 classes (see Figure [4)) contain more than 20
images per dataset and we selected them to define a dense cross-dataset setup.
We remark that each image in SUN is annotated with the list of objects visible
in the depicted scene: we consider an image as a sample of a category if the
category name is in the mentioned list.

Sparse set. A second setup is obtained by searching over all the datasets for
the categories which are shared at least by four collections and that contain a
minimum of 20 samples. We allow a lower number of samples only for the classes
shared by more than four datasets (i.e. from the fifth dataset on the images per
category may be less than 20). These conditions are satisfied by 105 object
categories in Imagenet overlapping with 95 categories of Caltech256 and Bing,
89 categories of SUN, 35 categories of Caltech101, 17 categories of Office, 18
categories of RGB-D, 16 categories of AwA and PascalVOC07, 13 categories of
MSRCORID, 7 categories of ETH80 and 4 categories of a-Yahoo. The histogram
in Figure [5| shows the defined sparse set and the number of images per class: the
category cup & mug is shared across nine datasets, making it the most popular
one.

Representation. Dense SIFTs are among the most widely used features in
several computer vision tasks, thus we decided to use this descriptor and we
adopted the same extraction protocol proposed in the Imagenet development
kitﬂ by running their code over the twelve considered datasets. Each image is
resized to have a max size length of no more than 300 pixels and SIFT descriptors
are computed on 20x20 overlapping patches with a spacing of 10 pixels. Images
are further downsized (to 1/2 and 1/4 of the side length) and more descriptors
are computed. We publicly release both the raw descriptors and the Bag of
Words (BOW) representation. We used the visual vocabulary of 1000 words
provided with the mentioned kit: it was built over the images of the 1000 classes
of the ILSVRC2010 challengeﬁ by clustering a random subset of 10 million SIFT

vectors.

4 A first experimental evaluation

Given the wide variability within and between the considered collections the
defined setups can be used for several tasks. Some of the datasets come with extra
side information (e.g. attributes, point clouds, bounding boxes) and this opens
many possibilities for the evaluation of different (transfer) learning methods
across the datasets. Here we kick the experimental analysis off with an initial
study on domain adaptation methods.

Subspace Methods. Subspace domain adaptation approaches presented high
performance in the unsupervised setting where the labeled source data are used
to classify on unlabeled target samples. In particular the LANDMARK method

3 fww image-net.org/download-features
4 http://www.image-net.org/challenges/LSVRC/2010/
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proposed in [I4] was indicated as a reliable technique to overcome the dataset
bias [I2]. This approach consists of three steps. (1) A subset of the source data
is selected by choosing the samples that are distributed most similarly to the
target. This process is executed by solving a quadratic programming problem
and it is repeated to consider different similarity levels among the domains by
changing the bandwidth o, of a Gaussian RBF kernel. (2) Each data subset
works then as an auxiliary source to learn a domain invariant representation
with the GFK algorithm [I3]. Thus, for each sample x € RP and each scale
q we obtain a mapping ®,(x) € R? to a subspace with d < D. (3) Finally a
classification model is learned on the auxiliary data by combining the different
obtained representations with a multi-kernel SVM. Overall the method needs
several parameters: a threshold to binarize the solution of the quadratic problem
and identify the landmarks in the source, a set of o, values and the subspace
dimensionality d.

The GFK algorithm represents each domain in a d dimensional linear subspace
and embeds them onto a Grassmann manifold. The geodesic flow on the manifold
parametrizes the path connecting the subspaces and it is used to define the
mapping @ to a domain invariant feature as mentioned above.

Self-labeling. Instead of subselecting the source, a different domain adaptation
approach can be defined by subselecting and using the target samples while
learning the source model. This technique is known as self-labeling [2I3] and
starts by annotating the target with a classifier trained on the source. The target
samples for which the source model presents the highest confidence are then used
together with the source samples in the following training iteration.

When dealing with large scale problems self-labeling appears much more
suited than the LANDMARK method. The main reason is in the high computa-
tional complexity of solving a quadratic problem over a source set with thousands
of samples and repeating this operation several times over different similarity
scales among the domains.

We consider here a naive multiclass self-labeling method and we indicate it
as SELF LAB in the following. A one-vs-all SVM model is trained on the source
data with the C parameter chosen by cross validation. At each iteration the
model is used to classify on the target data and the images assigned to every
class are ranked on the basis of their output margin. Only the images with a
margin higher than the average are selected and sorted by the difference between
the first and the second higher margin over the classes. The top samples in the
obtained list per class are then used in training with the pseudo-labels assigned
to them in the previous iteration. In this way the sample selection process comes
as a side-product of the classification together with a re-ranking of the SVM
output margins. Moreover this approach directly exploits the multiclass nature
of the domains which is generally disregarded when focusing only on how to
reduce the mismatch among their marginal distributions.

In our implementation we considered the target selection at a single scale by
using a simple linear SVM, but it can also be extended to multiple scales con-
sidering non-linear kernels. For the experiments we set the number of iterations
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A-C|A-D|A-W||C-A |C-D|C-W|W-A|W-C|W-D||AVG
NO ADAPT [I4] |41.7|41.4|34.2|/51.8|54.1|46.8 || 31.1 [31.5|70.7 || 44.8

GFK [14] 42.2142.7/40.7 || 44.5|43.3|44.7| 31.8 | 30.8 | 75.6 || 44.0
LANDMARK [14]|45.5(47.1|46.1|(56.7|57.3|49.5 (|40.2|35.4|75.2|/50.3

SELF LAB  [43.6]43.3[45.8]55.8[41.4]53.2][39.9[36.1[82.8[[49.1]
Table 1. Classification rate results (%) on the Office-Caltech dataset. Here A,C,D,W
stand respectively for Amazon, Caltech, Dslr, Webcam and e.g. A-C indicates the
source:A, target:C pair. The results of NO ADAPT, GFK and LANDMARK are
reported from [I4]. The last column contains the average results per row. Best results
per column in bold.

NO ADAPT GFK LANDMARK SELF LAB
ss| I | C| S |drop|| T | C| S |drop|| I | C | S |drop|| T | C | S |drop
1130.9| - |22.1|13.0{43.0|| - |24.8]13.4(38.2|| - (24.7|13.0|39.2|| - |24.0/13.5|39.2
C|48.918.9| - |9.8|70.6([19.1] - [10.5/69.7||/17.5| - |9.9(70.6|(21.4| - |11.7|66.1
S[29.5/9.4|74| - |71.5(]9.3[8.0| - |70.5||9.1|8.7| - |71.9]11.2]/9.2| - [65.4
[AVG] 135 [6L7] 142 [595] 136  [60.6]] 15.0 [56.9]

Table 2. Average classification rate results (%) over 5 splits for cross-dataset classifica-
tion on 40 classes of three datasets: I, C, S stands respectively for Imagenet, Caltech256
and SUN. With ss we indicate the column containing the source-to-source results; see
the text for the definition of drop. Best average source-to-target and drop results in
bold.

and the number of selected target samples per class respectively to 10 and 2.
In this way a maximum of 20 target samples per class are used to define the
training model.

A first test on the Office-Caltech Dataset. Up to now the Office-Caltech
dataset is the most widely used testbed for domain adaptation with its 4 domains
and 10 shared object classes. The images of this collection were released together
with SURF BOW features and subspace domain adaptation methods showed
particularly high performance over it. To have a sanity check on the performance
of SELF LAB we run it on this dataset following the setup used in [14].

In Table [1) we show the performance of SELF LAB, reporting the results pre-
sented in [I4] as baselines. Here NO ADAPT corresponds to learning only on
the source data for training. We can see that the proposed naive self-labeling
approach performs better than NO ADAPT and GFK on average, and it is only
slightly worse than LANDMARK, despite being less computationally expensive.
On the downside SELF LAB has only a minimal safeguard against negative trans-
fer (that can be improved by better thresholding the SVM output margins or
tuning the number of iterations), and it suffers from it in the Caltech-Dslr case
(C-D), but GFK seems to have a similar behavior that affects all the cases with
Caltech as source. Overall this analysis indicates the value of SELF LAB as a
useful basic domain adaptation method.

A Larger Scale Evaluation. We repeat the evaluation described before on
three of the datasets in the proposed dense set: Imagenet, Caltech256 and SUN.
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We leave out Bing, postponing the study of noisy source/target domains for fu-
ture work. We consider the SIFT BOW features and 5 splits per dataset each
containing respectively 5534 images for Imagenet, 2875 images for SUN and
4366 images for Caltech256 over 40 classes. Every split is then equally divided
in two parts for training (source) and test (target). We use linear SVM for NO
ADAPT with the best C value obtained by cross-validation on each source. The
same C value is then used for SVM in combination with the GFK kernel and
we tune the subspace dimensionality on the target reporting the best obtained
results. A similar approac is adopted to choose the subspace dimensionality
for LANDMARK while the C value for the multi-kernel SVM is optimized over the
source through a cross-validation between the landmark and non-landmark sam-
ples (see [14] for more details). For both GFK and LANDMARK we use the original
implementation provided by the authors. A rough idea about the computational
complexity of the methods can be obtained by their running time on a modern
desktop computer (2.8GHz cpu, 4Gb of ram, lcore): for a single Caltech-SUN
split and fixing d=100, LANDMARK needs 1695s for the source sample selection
process on one scale. GFK kernel calculation and the subsequent source training
and target classification run in 7s, while SELF LAB performs 10 iterations in 110s.

We show the obtained recognition rate results in Table [2| The table is di-
vided in four parts, each for one of the considered four methods (NO ADAPT, GFK,
LANDMARK and SELF LAB). Here the training and the test datasets are respec-
tively specified in each row and column. We indicate with ss, st the source-to-
source and source-to-target results. The classification performance drop among
them is drop = (ss — st) * 100/ss. In the last row of the table we present both
the average drop value for each method and the average source-to-target re-
sults. The obtained accuracy confirms the existence of the dataset bias which is
particularly severe when passing from object-centric (Imagenet and Caltech) to
scene images (SUN). The considered domain adaptation methods appear only
minimally effective to alleviate it indicating the difficulty of the task. SELF LAB
shows here the best advantage with respect to NO ADAPT.

Although a more in-depth analysis is needed, these preliminary results al-
ready give an indication of how the domain adaptation and dataset bias scenario
may change when we consider large scale problems. In general a large amount
of data calls for methods able to deal efficiently with them. Moreover, a high
number of images per class together with high intra-class variability may reduce
the mismatch among the corresponding marginal data distributions. However,
the relation among the classes in two datasets can still be different. This pushes

5 The original feature dimensionality is 1000 and for GFK we tuned the subspace
dimensionality in d=[10,20,30, .. .,500]. On average over all the source-target combi-
nations the GFK performance increases with d and reaches a plateau for d > 200. For
LANDMARK the source sample selection threshold is chosen in [0.0001, 0.0005, 0.001]
and for time constraints we restricted the range for the subspace dimensionality to
two values d=[100,300]. The source and target domains are compared at five scales
q=[-2, -1, 0, 1, 2] with o4 = 2%0¢ where o9 is equal to the median distance over all
pairwise data points.
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towards discriminative approaches able to deal with differences in the conditional
distributions of the data.

5 Conclusions

In this paper we discussed the challenges faced when aligning twelve existing
image datasets and we proposed two data setups that can be used as testbed
for cross-dataset analysis. We extracted dense SIFT descriptors from the images
and we created a useful feature repository for future research. We consider this
as the first step of a wider project (official webpage: https://sites.google.
com/site/crossdataset/) that will continue by both extracting new features
and running several cross-dataset classification tests. The preliminary experi-
mental analysis presented here has already indicated the value of self-labeling as
a possible baseline for this task. Besides offering new challenges to domain adap-
tation methods, the proposed setups introduce also new research questions on
how to deal with different forms of weak supervision or whether it is possible to
transfer attributes and depth information across datasets. Moreover, it may be
interesting to understand if the dataset alignment could be done automatically.

To conclude, we believe that exploring the common aspects and the specific
characteristics of each collection will not only reveal more about the dataset
bias problem, but it will also allow to improve the generalization capabilities of
learning methods and mitigate the need for manual image annotation.

Acknowledgments
The authors acknowledge the support of the FP7 EC project AXES and FP7
ERC Starting Grant 240530 COGNIMUND.

References

1. Bergamo, A., Torresani, L.: Exploiting weakly-labeled web images to improve ob-
ject classification: a domain adaptation approach. In: NIPS (2010)

2. Bruzzone, L., Marconcini, M.: Domain adaptation problems: A dasvm classification
technique and a circular validation strategy. IEEE Trans. PAMI 32(5), 770-787
(2010)

3. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In:
NIPS (2011)

4. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000
image categories tell us? In: ECCV (2010)

5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009)

6. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
Decaf: A deep convolutional activation feature for generic visual recognition. arXiv
preprint arXiv:1310.1531 (2013)

7. Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.: The Pascal
Visual Object Classes (VOC) Challenge. IJCV 88(2) (2010)


https://sites.google.com/site/crossdataset/
https://sites.google.com/site/crossdataset/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A Testbed for Cross-Dataset Analysis 13

Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In: ICCV (2013)

Farhadi, A., Endres, 1., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: CVPR, (2009)

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. 106(1), 59-70 (2007)

Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual do-
main adaptation using subspace alignment. In: ICCV (2013)

Gong, B., Sha, F., Grauman, K.: Overcoming dataset bias: An unsupervised do-
main adaptation approach. In: NIPS Workshop on Large Scale Visual Recognition
and Retrieval (2012)

Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: CVPR (2012)

Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: Discrim-
inatively learning domain-invariant features for unsupervised domain adaptation.
In: ICML (2013)

Gong, B., Grauman, K., Sha, F.: Reshaping visual datasets for domain adaptation.
In: NIPS (2013)

Griffin, G., Holub, A., Perona, P.: Caltech 256 object category dataset. Tech. Rep.
UCB/CSD-04-1366, California Institue of Technology (2007)

Hand, D.J.: Classifier Technology and the Illusion of Progress. Stat. Sci. 21, 1-15
(2006)

Hand, D.J.: Academic obsessions and classification realities: ignoring practicalities
in supervised classification. In: Classification, clustering, and data mining applica-
tions, pp. 209-232 (2004)

Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering latent domains for
multisource domain adaptation. In: ECCV (2012)

Khosla, A., Zhou, T., Malisiewicz, T., Efros, A., Torralba, A.: Undoing the damage
of dataset bias. In: ECCV (2012)

Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgbh-d object
dataset. In: ICRA (2011)

Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between class attribute transfer. In: CVPR (2009)

Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object
categorization. In: CVPR (2003)

Microsoft: Microsoft Research Cambridge Object Recognition Image Database.
http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-
9f6eff91b301 /default.aspx (2005)

Ordonez, V., Deng, J., Choi, Y., Berg, A.C., Berg, T.L.: From large scale image
categorization to entry-level categories. In: ICCV (2013)

Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adap-
tation: A unifying perspective. In: CVPR (2014)

Qiu, Q., Patel, V.M., Turaga, P., Chellappa, R.: Domain adaptive dictionary learn-
ing. In: ECCV (2012)

Rodner, E., Hoffman, J., Donahue, J., Darrell, T., Saenko, K.: Towards adapting
imagenet to reality: Scalable domain adaptation with implicit low-rank transfor-
mations. CoRR abs/1308.4200 (2013)

Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: ECCV (2010)



14

30.

31.

32.

33.
34.

T. Tommasi, T. Tuytelaars

Sanchez, J., Perronnin, F.: High-dimensional signature compression for large-scale
image classification. In: CVPR (2011)

Tommasi, T., Caputo, B.: Frustratingly easy nbnn domain adaptation. In: ICCV
(2013)

Tommasi, T., Quadrianto, N., Caputo, B., Lampert, C.H.: Beyond dataset bias:
Multi-task unaligned shared knowledge transfer. In: ACCV (2012)

Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)

Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale
scene recognition from abbey to zoo. In: CVPR (2010)



